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Preface

For dealing with atoms involving many electrons the ac&icatantum theory,
involving a solution of the wave equation in many-dimensiospace, is far
too complicated to be practicable. One must therefore reéscapproximate
methods. (P.A.M. Dirac, 1930)

It is such approximate methods that are the subject of ttog.bo

Tlbingen, January 2008
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Chapter |I.
Quantum vs. Classical Dynamics

In this introductory chapter we recapitulate basic elem@fitguantum mechanics, em-
phasizing relationships with classical mechanics andayieg for the later chapters in
a reasonably self-contained way. There are, of course, ety where this material is
presented more extensively and from different viewpoifdsiame but a few, we mention
the gentle mathematically-minded introduction by ThalR800), the complementary but
visually equally appealing physical approach by Brandt &aBan (2001), the substantial
brief text by Gustafson & Sigal (2003) from the mathematfa}sics point of view and
the outreaching book by Tannor (2007) with a time-depend&emical physics perspec-
tive. There are the monumental classic treatises by Me§s@6?) and Cohen-Tannoudji,
Diu & Laloé (1977), and the historical milestones left behby Dirac (1930) and von
Neumann (1932).

.1 A First Look

To enter the stage, we begin by formulating the equationsaifam of one (or several)
particles in classical and quantum mechanics. We consigerticle of massn in a
conservative force field, which is the negative gradientpbtentialV (x), x € R3.

I.1.1 Classical Mechanics

In classical dynamics, the state of the particle at any tilmeharacterized by ifgosition
q(t) € R® andmomentunp(t) € R3. It changes in time according to the Newtonian
equations of motion

mj=-VV(g), p=mq,

where the dots denote differentiation with respect to tinie= d/dt). This can equiva-
lently be written as a first-order system of ordinary diffefal equations,

p

i = =
" el

p = —-VV(g).

With theHamiltonian function
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Schrodinger Ip|?
equation H(q,p) =T(p) + V(q), T(p)=5—-

- 2m

(here|p|? = p - pis the squared Euclidean norm), which represents the toéabg as the
sum of the kinetic energ¥'(p) and the potential enerdy(q), the differential equations
become Hamilton’s canonical equations of motion

) OH
g = a—p(q,p)

o 12)
p = —8—(1((1,?)-

The formalism extends in a straightforward way to a systenVgparticles of masses
mi, ..., my, With the position vecto; = (q1,...,qn)7 € R*¥ and the momentum
vectorp = (py,...,pn)T € R3¥ collecting the positions and momenta of the particles.
The kinetic energy is then given as the sum of the kineticgiasiof the particles'(p) =
SN Ipal?/(2my,), and the potentiaV (q) = V (g1, ..,qn) depends on the positions
of all the particles and characterizes their interactidre potential might in addition also
depend on time to describe phenomena in a time-varying@mwient. Adding one more
particle has the consequence of addingdgpendentariables(gy 11 (), pn+1(t)) to the
system of ordinary differential equations. Computatiorithwnillions, even billions of
particles are routinely done in classical molecular dyrarsimulations.

[.1.2 Quantum Mechanics

In guantum mechanics, the state at titvie described by the complex-valuegve func-
tion ¢ (z,t), depending onc € R? in the case of a single particle. Motivated by de
Broglie's hypothesis of a particle-wave duality of mat®chrodinger (1926) postulated
the evolution equation that has since been recognized dsrtdlamental law for describ-
ing non-relativistic particles in physics and chemistry:

ihG = Ho. 1)

Here,i = v/—1 is the imaginary unit, and is Planck’s constant which has the physical
dimension of an action, that is, energy divided by frequesramomentum times length.
Its value ish = 1.0546 - 10~3* Joulesec. TheHamiltonian operatorff on the right-hand
side is the sum

H=T+V (1.4)
of the kinetic energy operatdr and the potential’. Here,
hQ
TYy=——A 15) |1:T
b= Ay (L5)

with the LaplaciamA = V - V (the divergence and gradient are with respect to the spatial
variablexr). With themomentum operatgr = —ihV, the expression of the kinetic energy
looks formally the same as in classical mechanics:
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p-p
m
On the other hand, the potential simply acts as a multipicaiperator:

(V) (2) = V(z)¥(2).

The Schrodinger equation (1.3) is thus a partial difféegequation of first order in time
and second order in space.

The usuaktatistical interpretatiorof quantum mechanics, due to Born (1926), views
|v(-, )| as a probability density for the position of the particles grobability of the par-
ticle to be located within a volum@ C R? at timet, equals|, [¢(x, t)|? dz. Moreover,
the squared absolute value of the Fourier transform of theeviianction is interpreted as
the probability density for the momentum of the particle.

The formalism again extends directly to several partichesin the classical case,
the multi-particle Hamiltonian is constructed as the sunthef kinetic energies of the
single particles and a potential accounting for externalde and interaction. The Hamil-
tonian operator now acts on a wave functiofr, ..., zy,t) depending on the spatial
coordinates corresponding to each of tleparticles. Its squared absolute value repre-
sents the joint probability density of particlésto N to be at(x1,...,zy) at timet.
The multi-particle wave function is a high-dimensional exttj adding one more parti-
cle yields another threéedependentariables! Computations with direct finite-difference
discretizations of Schrodinger’s equation are out of nfac more than two or three par-
ticles.

|.2 The Free Schiddinger Equation

In the absence of a potential, for = 0, the Schrodinger equation (1.3) becomes

2
ih%_f(x,t) - —2h—Az/J(x,t), zeRY teR. (2.1)
m

[.2.1 Dispersion Relation

Einstein’s equation
B = ho 22)

relates the energy of emitted electrons to the frequenayaidént light in the photoelec-
tric effect, which is explained by light quanta showing tlaetjcle nature of light (Einstein
1905). It was hypothesized by de Broglie (1924) that partiehve duality should exist
also for matter, and the energy relation (2.2) should bectasb for matter waves. As
we will see in a moment, Equation (2.1) can be understoodsastireg from an effort to
reconcile (2.2) with the classical expression for the epefa free particle with mass
and momentunp,
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2
g 23)
m
for solutions of a linear evolution equation
0
W —P@)w, zeR’icR,

with some (possibly pseudo-) differential operai(d, ). A plane wave:!(**=<%) with
wave vectork € R? and angular frequenay is a solution of this equation if satisfies
thedispersion relation

w=w(k) =1iP(ik).

Clearly, knowing the dispersion relation is tantamountriowing the evolution equation
with operatorP (9,,).

In relating (2.2) and (2.3), it is assumed that the momentumolsl be

p=mu, (2.4)

where the velocity is taken to be tigeoup velocity

ow

=22, (2.5)

which is the velocity of the envelope of a localized wave pa¢kamilton 1839, Rayleigh
1877; see also Sect.1.2.3 below) and thus represents thiel@aelocity. With the re-
lations (2.4)—(2.5), the equality of the energies (2.2) &\8) becomes the condition
hw = $m|0w/0k|?, which is satisfied for the dispersion relation of the frear8dinger

equation (2.1),
R, .

With (2.4)—(2.5), this further implies de Broglie’s relauti

@

which together with (2.2) expresses the plane waveifls?—«t) = en(Po—E)
With (2.7), the equality of the energies (2.2) and (2.3) & jhe dispersion relation (2.6)
of the Schrodinger equation.

[.2.2 Solution by Fourier Transformation

subsec: fouri er |

We consider (2.1) together with the initial condition

Y(z,0) = o), e R (2.8)

To concur with the interpretation of)|? as a probability density, we assume thigthas
unit L2 norm:
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ol = [ | lou(o)do =1. 2.9)

This initial-value problem is solved using Fourier transfis. We begin by recalling the
necessary prerequisites; see, e.g., Katznelson (197ajp.@h or Reed & Simon (1975),
Chap. IX. For convenience, in the following we choose phalginits such that

h=1.

Fourier Transform. Let S denote the Schwartz space of rapidly decaying smooth func-
tions, that is, of arbitrarily differentiable complex-uad functions oriR? which, to-
gether with all their partial derivatives, decay fastermthtze inverse of any polynomial as
|z] — oo. For a Schwartz functiop € S, the Fourier transfornd = Fp given by

1

B = i /R o)z, kR, (2.10)

is again a Schwartz function. There is the inversion formula

_ 1 ik-x d — "
@(f)—W/Rde (k) dk, z € RY, (2.11) [1:inv-fourier

and the Plancherel formula relating thé norms ofy and,

lill = il (2.12)

The Fourier transform changes partial derivatives intotiplidation by the Fourier vari-
able:

—id;p(k) = k;@(k), (2.13) [I:fourier-diff |

and hence the negative Laplacian is transformed into nfighiton by the squared Eu-
clidean normk|? = k% + - -- + k3:

—Ap(k) = |k[*3(k) . (2.14) [I:fourier-lap

By density or duality, the above formulas are extended ta@pyate larger spaces of
functions or distributions.

Solution via Fourier Transformation. Formally taking Fourier transforms with re-
spect to the spatial variablein (2.1) yields decoupled ordinary differential equations
parametrized by the dual varialite

i

O k|* ~
“ot

(kvt) = % ’[/)(kvt)a ke Rdv

which are solved by

~

Dk, 1) = e~ 5 (k). (2.15)
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Obviously, |t(k, t)|2 = |o(k)|? for all k andt. We note that for initial data in the
Schwartz space), € S, we havey, € S and thus furthew)(-,¢) € S for all realt.
The function obtained by the inverse Fourier transformi}.1

S it 5 O () dik 2.16) [1: psi
w(I,t)—W Rde m Y apo (k) dk, (2.16)

is thus again a Schwartz function, and by the above transfoles, this function is veri-
fied to be a solution to (2.1) with (2.8). We have ubftnorm

G 0* =1 forallt (2.17) [1: psi-norm

by the Plancherel formula, by (2.15) and condition (2.9)hed|+(-, t)|? remains a prob-
ability density for all times.

The Free-Evolution Operator. With the kinetic energy operatdr = —ﬁA, we use the
notation

D(t) =(t) = e Ty,
This defines the evolution operator

e .S 5 8.

By (2.17) and because the Schwartz sp&de dense in the Hilbert spade® of square-
integrable functions, we can extend the operator to a naesegoving operator

e*itT . L2 N L2
and we considee Ty, for arbitrary+, € L? as a generalized solution to the free

Schradinger equation (2.1) with initial state (2.8).

[.2.3 Propagation of Heavy Wave Packets

)sec: wavepacket |

We consider the free Schrodinger equation (2.1) With 1, and as initial state a wave

packet _
Yo(z) = ePTa(x) with acS, peR?, (2.18)

where we are particularly interested;irof large norm, so that a highly oscillatory com-
plex exponential is modulated by the smooth, rapidly de@afunctiona(z). We show
that the following holds for the solution of (2.1), uniforynin p € R? as the mass

m — oo W, 1) = e (2= 2t) a(x - %t) + @(%) . (2.19)

Here we note thphase velocity/(2m) in the argument of the exponential and greup
velocityv = p/m in the argument of, and

(2, t)* =~ [ho(z — vt)|?,
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which describes uniform straight motion of the envelopéhtite group velocity. In
particular, the centre of the wave packgt,) = [, = [¢(x,t)|* dz, moves according to

alt) = q(0) +1 = (2.20)

Heavy particles thus show approximately classical behavio

Proof of(2.19): We start from formula (2.16) fa¥(z, t) and note that/jo(k) =a(k —p).
We decomposék|? = |k — p + p|> = |p|* + 2(k — p) - p + |k — p|? and substitute the
integration variablé: for £ — p to obtain

L
(27)4/2

2
Ip|
2

. ) ) ) . 2
1) =et e e e te Mm ef'f_ma .
T ipx —1i t ikew —ik-2t —qlkl t (k) dk
R4

1kl2
With the relation|eﬂ%t — 1| < |k[*£, we obtain with the inverse Fourier transform
formula

ipa—il2? 1 ; _p t
— ipr—ig -t L ik-(x—E2t) ~ v
vt = e /R e (k) dis+ 0( =)
_ ipwfi%t _ £ i
= e 2 a(:z: mt)—i—(’)(m),
where the constant in th@-symbol isC' = [, |k[*[a(k)| dk. O

|.3 The Schrodinger Equation with a Potential

We now turn to the Schrodinger equation (1.3) with a redlied potential/ (), z € RY,

2
i — 1 Ay v, (3.1)
ot 2m

For convenience we choose again units wits 1, as we will usually do when we treat
mathematical rather than physical questions.

[.3.1 Self-Adjoint Operators and Existence of Dynamics

The existence of solutions to (3.1) rests on the theory éfasibint unbounded operators
on a Hilbert space. Let us briefly recall the relevant coreept

Let H be a complex Hilbert space with inner prodydt-), taken antilinear in its first
and linear in its second argument. A linear oper&for D(H) — 'H, defined on a domain
D(H) dense irH, is calledsymmetridf

(Hlp) = (W[ Hp) Vi, p € D(H).
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The operator iself-adjointif for any ¢, n € H the relation
(Hy|) = (|n) Yy € D(H) implies ¢ e D(H) andn = He.

Every self-adjoint operator is symmetric, but the convésset true for unbounded oper-
ators. Every self-adjoint operatordtosed for any sequencép,,) in D(H), the conver-
gencep,, — ¢, Hy, — n implies ¢ € D(H) and n = Ho.

An operatoiU on'H is unitary if it preserves the inner product:

UpUp) = {¥lp) VoM.

As the following theorem states, for self-adjoint operathr the abstract Schrodinger
equation

dp

Hy (3.2) [1:schroed-abstract

7 =
dt
has a unitary evolution.

"t hm exi st ence| Theorem 3.1 (Existence of Dynamics)Assume thaf! is a self-adjoint operator on a

Hilbert spacel. Then, there is a unique family of unitary operaters‘?, t € R, with
the following properties:

1. The operatorsa—*H have the group property:
e (s H — o—itH o—isH forall s,t € R.
2. The mapping — e~ is strongly continuous: for every, € H,
e oy — by intheH-normast — 0.

3. Equation (3.2) with initial valugy, € D(H) has the solution)(t) = e~y :

d .
iaef’nﬁdeo — HefltHdJO ’

where the expressions on both sides of the equality sigredhebeist.

Theorem 3.1 can be proved by first noting that it holds for lmehoperators, then
by approximatingH by a sequence of symmetric bounded operatdgsand carefully
passing to the limit in the exponentials?#»; see Gustafson & Sigal (2003), Chap. 2.
Another proof is based on the spectral theory of self-adjoperators as developed by
von Neumann and put to good use in his mathematical foungatbquantum mechan-
ics (von Neumann, 1932). Based on von Neumann’s spectratyth€heorem 3.1 was
given by Stone (1932) who also proves an interesting coavéfrd/(¢), ¢t € R, is a
strongly continuous group of unitary operators, th&) = e~* for some self-adjoint
operatorH.
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[.3.2 Potentials Giving Self-Adjoint Operators

In applying Theorem 3.1 to the Schrodinger equation (3ri}he Hilbert spacé{ =
L?(R9) of square-integrable functions, we need conditions thatienthat the Hamilto-
nian H = T + V is a self-adjoint operator. While symmetry is easily obéginshowing
self-adjointness can be quite subtle.

First we remark thal’ = — - A is self-adjoint with the domai®)(T") = H?(R?),
the Sobolev space of functions which together with theiregelized partial derivatives
up to order 2 are square integrable. (This is shown usingi&otansforms.)

Knowing thatT is self-adjoint, what can we say abdUt- 1V ? The following very use-
ful perturbation result is known as ti@to-Rellich theorensee Kato (1980), Sect. V.4.1,
Theorem 4.3:

Let T be a self-adjoint operator on a Hilbert space, alWda symmetric operator
bounded by|Vy|| < al|¢| + b||T%|| forall ¢» € D(T), withb < 1. ThenH =T +V
is self-adjoint with domaiD(H) = D(T).

In particular, forl’ = —ﬁA a bounded potential always gives a self-adjoint Hamil-
tonianH = T + V with domainH2(R?). A simple criterion that follows from the above
result with the Sobolev inequality dR?, is the following (Kato 1980, Sect. V.5.3): As-
sume

V=Ve+Va with Vo €L>®R?), Vs L*R?).

Then,T + V is self-adjoint with domairD(H) = H?(R?). For example, this applies to
the Coulomb potential/ (z) = |=|~*.

An enlightening discussion and a variety of results on thfeesBointness of Schrodinger
operators are given in Chapter X of Reed & Simon (1975). Rkaidy, self-adjoint ex-
tensions always exist for a potential bounded from beibwd(, p. 177), but they need not
be unique, and different extensions can correspond tordiffeohysicsipid., p. 145). A
unique self-adjoint extension is known to exist for everpmegative continuousonfin-
ing potential, that is, satisfyin§’ (x) — oo as|z| — oo; see Hislop & Sigal (1996).

Later in this text, we will not pay much attention to the sebids of self-adjointness
and, in cases of possible doubt, we simply assume that ttemfmatis such that/ =
T + V yields a well-defined self-adjoint operator aA(R9).

1.3.3 Lie-Trotter Product Formula

We have already constructed the free-particle evolutieerapre 7 by Fourier trans-
formation, and for the potential we simply hage Y ¢)(z) = e~V @y (z). We do
nothavee#(T+V) = ¢—itT ¢—itV puyt there is the following result due to Trotter (1959),
whose finite-dimensional version is credited to Lie. See Rised & Simon (1972), The-
orem VII1.30, for precisely this version and a short proof.

Theorem 3.2. Supposethdf’, V, andH = T'+V are self-adjoint operators on a Hilbert
spaceH. Then, for every € R andy € H,

€_ltH<,O = lim (e—th/n e—th/n) 0.

n—oo
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In view of the strong continuity of~*", an equivalent statement is

e~Hy = lim (e—itv/(2n) o—itT/n e—itV/(gn))"

n—oo

@Y.
We will encounter the short-time approximation (over a d$riale stepAt)

g TIALH [ (mIALV/2 —iMT —iAtV/2 (3.3) [I:strang

known assymmetric Trotter splittingpr Strang splitting repeatedly in this text, in var-
ious versions and disguises. This is one of the most widedgl @pproximations to the
evolution operator in computations.

Relationship with the Stormer—Verlet Method for Classical Mechanics.Consider now
a wave packet as in Sect. 1.2:8(x) = e?*a(z), where we think ofa(z) as being
localized near = ¢q. We consider the Taylor expansion of the poteritiét) at g,

V() =V(g) +VV(g) (z —q) + Q(z,q)
with the quadratic remainder ter@, so that we have

eIV (z) = PV (@) ilp= S VV(@) (v-0) ~i5° Q0 g (2) . (3.4)
Here the first exponential on the right-hand side carriesas@hvhich is modified by
—%V(q) over the half—ste@—t. More interesting to us, in the second exponentiahtioe
mentunyp is shifted top — % VYV (q). We recall that in (2.20) we had a shift frgmosition
q to g + At p/m for the centre of the wave packet propagated by the free gonlop-
eratore~*4*7" in the situation of a large mass. Combining these formulas for changing
momenta and positions as they appear from the compositittf /2 e —1AtT —iAtV/2
of (3.3), we arrive at the following scheme: starting frgfn p°, set

1
p? = "= SAtVV(e)
1/2
R N i 65
m
1
pt o= p? - ZAVV(dY).

This is theStrmer—Verlet methotbr the numerical solution of the Newtonian equations
of motion (1.1), which is by far the most widely used numdriogegration method in
classical molecular dynamics. See Hairer, Lubich & Wan2€08) for a discussion of
this basic numerical method and its remarkable propeitiesfurther note from (2.19)
and (3.4) that the overall phase (the term in the exponeiddlis independent af) is
modified to
o' = ¢O+AtM — LAV () +V(gY)
N 2m 2 q 1)

where the increment is a quadrature formula approximatiding classical action integral
OAt(% — V(q(t))) dt along the solution(¢(t),p(t)) of the classical equations of
motion (1.1). We will explore relationships between (3.8043.5) in more depth in
Chapter V.
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l.4 Averages, Commutators, Uncertainty

We consider again the Schrddinger equation (3.1) with thmitonianH = 7'+ V and
look at spatial averages of position, momentum, etc. albagvave function.

I.4.1 Observables and Averages

With the jth position coordinate as multiplication operat()yjzp)(:c) = z;9(x), and a
functions of unit L2 norm withq;¢ € L?, we associate

Wlaw) = [ @@ da.

which represents thgth component of theosition averageof the statey, that is, the
expectation value of thgth component of the position with respect to the probability
density|v|2.

With the jth component of the momentum operator,= —ih d/dz;, we form (for
¥ € D(p;) and of unitL? norm)

Wlost) = [ T (~inge) do = [ nks 0P e
Rd X Rd
which is thejth component of thenomentum averagef the state) (recall de Broglie's
relation (2.7);p; = hk;). Similarly, we can consider thetal energy(y) | Hy). It is such
averages that can be observed experimentally.
Noting thatg;, p;, H are self-adjoint operators di¥, more generally we call any self-
adjoint operatord : D(A) — L? anobservablelts average in the stateé (v of unit L?
norm andy € D(A)) is written, in varying notations,

(4) = (A)y = (B | A]¥) = (| A9). (4.1)

[.4.2 Heisenberg Picture and Ehrenfest Theorem

Evolution of Averages and the Heisenberg PictureWe now study how the average
(A)(t) = (A)y() of an observablel changes in time along a solutiar(t) = v (-,t) of
the Schrodinger equation (1.3). Singé) = e~ *#/"), we have

(Do) = (AW) sy Wit A(t) = "1/ ge= /0, (42)

The operatorA(t) is said to give théHeisenberg picturef the evolution of the observ-
able (after Heisenberg, 1925), as opposed to the Schrédpicture working with wave
functions. For a fixed initial state,, Eq. (4.2) can be written more briefly as

(A)(t) = (A1) 4.3)
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Heisenberg Equation.A formal calculation, using the familiar relationrﬁe—“H/h =
%He_“H/h = e_itH/h%H, yields

dA 1 . .

) = — itH/h _HA(+ A H —itH/h

(1) = M (—HA() + A H) e
and hence, with theommutatorfA, H] = AH — HA and with " = d/dt, we have the

Heisenberg equation
AW = 140, 1]. @

Remark.Some care is needed in giving a precise meaning to the corntonutiiun-
bounded self-adjoint operators, which in general need xist.8\Ve note, however, that
for initial statesyy in a domainD which A maps intoD(H ) and H maps intoD(A), the
averages of both sides of (4.4) are well-defined and are thelgeal.

Energy Conservation.Since H commutes with itself, we obtain from (4.3) and (4.4) that
the total energy is conserved along every solution of the@lthger equation:

d

E<H>(t) =0. (4.5) | | - ener gy- cons

Formal Analogy with Classical Mechanics.The Heisenberg equation (4.4) shows a
close analogy to the corresponding situation in classiemhanics: a real-valued function
F(q,p) along a solutioriq(t), p(t)) of the Hamiltonian equations (1.2) changes according

to
d

dt
with the Poisson bracket

F(q(t),p(t)) = {F, H}(q(t), p(t))

d

oF 0G  OF 0G
{F,G} _;(8_%@ - @8_%-)’

as is seen by the chain rule and using (1.2). Formally thus poaicket replaces the other
in going from classical to quantum mechanics.

We now consider the Heisenberg equations (4.4) for the iposind momentum oper-
ators, with componentg; andp;: the corresponding time-dependent operaig(s) =
eitH/hqje—itH/h andpj(t) _ eitH/hpje—itH/h satisfy

G0 = a0, 1
t) = —p(t),H].

ih
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We note thafq; (t), H] = e*/"[q;, Hle="H/" and similarly forp;(t). For a Hamilto-
nian H = T + V with kinetic energyl’ = —% A and with a potential/ () acting as a
multiplication operator, we calculate

d .
1 1 1 h? 62 il aw »;
ih [qj’H]w = E[QjaT]l/f = _ﬁi; 2_[qja 6—505]1/1 = —Ea—% = P
! 1 0 oy oV
i i I = o VI = =5 = (Vi) + Vg = = =5
This gives us Heisenberg equations that look like the atabsiguations of motion (1.1):
i = A0
g 4
pt) = =VV(t)

with VV (t) = etH/h gV e~ itH/h,

Ehrenfest Theorem.When we take averagés = (-),(;) on both sides of (4.6) accord-
ing to (4.3), then we obtain the result by Ehrenfest (192} tie position and momentum
averages evolve by Newton-like equations:

dg - &

i m @)

5@) = —(VV).
It should be noted, however, that in general
(VV) # VYV ({a)).

unless the potential is quadratic.

1.4.3 Heisenberg Uncertainty Relation

Still in analogy with classical mechanics, position and neatom arecanonically conju-
gateobservables, which here means that they satisfy (with Krkeres delta)

1

lgy.me] = b 4.8)

as is readily verified by a direct calculation of the commutaimilar to the one given
above. This has an important consequence to which we tumn\Wexdefine thestandard
deviationor uncertainty widthof an observabléel in a state) as

Ad= (A=), (49)

where the average is taken with respect to the given gtate



14 I. Quantum vs. Classical Dynamics

Theorem 4.1 (Heisenberg Uncertainty Relation)The standard deviations of the posi-
tion and momentum operators satisfy the inequality

h
Ag; Ap; > 5 - (4.10) [1: heis-uncert

According to Heisenberg (1927), this now world-famous urady is interpreted as say-
ing that it is impossible to know at the same time both thetmosand momentum of an
object with arbitrarily small uncertainty .

Proof. The result follows from (4.8) and from tHRobertson-Sclirdinger relationwhich
states that for any observablésand B,

1
AAAB = 3[([A,B])|. (4.11)
This is obtained with the Cauchy-Schwarz inequality anddietity
—2Im (Ay | By) = (¢ |i[A, BlY)

as follows (we may assuniel) = (B) = 0 for ease of notation):

AAAB = ||AY|| - | BY|| > [(Ay | By)| > [Im (Ay | By)| = %W[A,BD!- O

.5 Many-Body Systems

[.5.1 Distinguishable Particles

Consider firstN independent free particles, without any interaction, nered from

n = 1,...,N. The probability density at time for particlen to be at positionz,, is

[ (2, ) ]2, the square of the absolute value of the wave function. Smeparticles are
assumed independent, the joint probability density fotiglarl atz4, ..., particle N at

xy is the producf[f:;l |t (1., 1)|?, which is the squared absolute value of the product
wave functiony(x1, ..., zN,t) = Hﬁlvzl Yn(zy, t) that solves th& N-dimensional free
Schradinger equation

O . al h?
ih—- =Ty with T_;Tn, Ty = =55,
where 4,, is the Laplacian with respect to the variahlg. Similarly, if each particle
is subjected to an external potentid|(x,, ), then the product wave function solves a
Schrodinger equation with a potential that is the sum ofdimgle-particle potentials.
With particles interacting via a potenti®l(z1,...,zxy), however, the solution of the
multi-particle Schrodinger equation
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0
z’ha—zf:Hw, H=T+V, Y =y(x1,...,2N,1),
is in general no longer in product form. As a rouggiproximatiorto the high-dimensional
wave function we might still look for a function in productrfo — an old idea realized

in the time-dependeitartree methodliscussed in Chapter 1.

1.5.2 Indistinguishable Particles

subsec: i ndi st |

When particles cannot be distinguished in their physicapprties, such as mass, charge,
or spin, then the average of any observable is required ta@ireomchanged under an
exchange of the particles. More formally, for two identipalticles 1 and 2, denote by
Ryp(x1,x2,t) = (a2, x1,t) the wave function for exchanged particles. Itis then resglir
that for every observablé and at every time,

(R | A|RY) = (6| Al ). (5.1)

To see the implications of this condition, consider the deposition of the wave function
into its symmetric and antisymmetric parfs= 1 + ¢_ with Ry = ¢, andRy_ =
—1_. Condition (5.1) then yields Rg) | A | ¢_) = 0 for all observablesl, which turns
out to imply that eitheg)_ = 0 or,. = 0.

We are thus left with two possibilities, symmetry or antisgstry:

U(xa,21,t) = U(21,20,t)  (bosons)  or (5.2)
U(xg, w1, t) = —(x1,32,t)  (fermions). (5.3)

Remarkably, for one kind of physical particle, always ond #ire same of the two cases
is realized. The two situations lead to very different pbgkbehaviour. It is the antisym-
metry (5.3) that is known to hold for electrons, protons aadtrons: these afermions
They obey theéPauli exclusion principlg€Pauli 1925) which postulates that like particles
cannot simultaneously be in the same quantum state. NdtéstBaimplies

w('r7 x? t) = O 3
so that two identical fermions cannot be at the same positidie same time.

A product state does not have the antisymmetric behavia8) gut it can be anti-
symmetrized: with two indistinguishable particles,

Y(x1, 22, 1) = % (@1(171, t)p2(z2,t) — %01($27t)<ﬂ2($17t))

has the required antisymmetry (and vanishes if, t) = 2 (-, t), in accordance with the
Pauli principle), and so does tistater determinant

1
’l/)(xla B aINvt) = W det(‘%’](zm t))j\,]nZI (54)
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in the case ofV identical particles. Approximation of the electronic wawaction by
Slater determinants of orthogonal orbitals (i.e., sirglstron wave functions); is done
in the time-dependetartree—Fock methadsee Chapter I1.

It is also of interest to see what is the effect of ignoringgmmetry in the approxi-
mation of the wave function of well-separated identicalf@mic particles. Suppose that
¢(z1,x2,t) is a solution of the time-dependent Schrodinger equatioictnis essentially
localized near(z1)(t), (x2)(t)) but which is not antisymmetric. As long &s;)(¢) and
(x2)(t) remain clearly separated (well beyond the widths, (¢t) and Ax»(t)), the anti-
symmetrizationp(z1, x2,t) — p(x2, 21, t) does not deviate substantially frap(, , x2, t)
in a neighbourhood af(z1)(t), {(x2)(t)), so that the particles can be considered to be dis-
tinguishable by their well-separated positions. This oles#on often justifies ignoring
antisymmetry in the treatment of identigalcleiof a molecule, for which the above lo-
calization and separation condition is usually met in clstmiOn the other hand, for the
less localizeablectronsa careful treatment of antisymmetry is essential.

[.5.3 The Molecular Hamiltonian
For a molecule, the Hamiltonian is the sum of the kinetic gpaf the nuclei and the

electrons, and the potential is the sum of the Coulomb iotienas of each pair of parti-
cles:

Huo=T+V with T=Ty+T. and V=Vyny+ Vye+Vee.  (5.5)

For N nuclei of masses/,, and electric charges,, e, with position coordinates,, € R?,
and L electrons of mass» and charge-e, with coordinateg, € R?, the respective
kinetic energy operators are

N h2 L h2
I==2qp A T=m g A
n=1 =1

and the potential is the sum of the nucleus-nucleus, nuetdestron and electron—
electron interactions given by

L N
I 7 €2 Zne>
Vnn(z) = Z Ton — 2] VNe(xvy):—227v
I<k<n<N 1Tk T 4n
2

V)= Y. —

1<j<t<L 195 — yel

It is often convenient to choosgomic unitswhereh = 1, the elementary charge= 1,
the mass of the electran = 1, and where the length unit is chosen such that the Bohr
radius of the hydrogen atomis= 1.

The self-adjointness of such Hamiltonian operators, watmdin H2(R3V+3%) | has been
shown by Kato (1951); see also Reed & Simon (1975), Theorelf.X.
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Any attempt to “solve” numerically the molecular Schrogien equation

., OV
’LhE: molg/v Lp:W(Ila"'aIvala"'vyLvt)

faces a variety of severe problems:

— the high dimensionality (even for a small molecule such ag,@@re are 3 nuclei and
22 electrons, so that is a function oriR™!);

— multiple scales in the system (the mass of the electron isoappately 1/2000 of the
mass of a proton);

— highly oscillatory wave functions.

To obtain satisfactory results in spite of these difficsltiene requires a combination of
model reductionbased on physical insight and/or asymptotic analysis, anderical
techniquesused on the reduced models that are intermediate betwessicaband full
quantum dynamics. This is the subject of the following chegt
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I'l:sect:qvar

I1: subsec: gvar |

Chapter II.
Reduced Models via Variational Approximation

There is a wide variety of models, or approximations, that iatermediate between
the full time-dependent Schrodinger equation of manyytmeantum mechanics and the
Newtonian equations of classical mechanics. Most of thesgets are based on a time-
dependent variational principle, first used by Dirac (1988)ich plays a similarly funda-
mental role for the time-dependent Schrodinger equatah@Rayleigh-Ritz variational
principle does for the Schrodinger eigenvalue probleme&d, several of the methods for
the stationary problem, as for example the Hartree—Fockadehave a time-dependent
analogue that comes about by the same choice of approximatmifold to which the
variational principle is restricted. There are, howevéifertent aspects that come into
play in the time-dependent situation, both in the modedipgfoximation aspects and in
the numerical treatment of the reduced models.

We first give an abstract formulation and various interpiets of the time-dependent
variational principle, and then turn to some basic exampplasgradually take us from the
full molecular Schrodinger equation down to classicaleaalar dynamics: the adiabatic
or time-dependent Born—Oppenheimer approximation thatirghtes the electronic de-
grees of freedom, the time-dependent self-consistent dipfdoximation that separates
the nuclei, and Gaussian wavepacket dynamics that panaetetine single-particle wave
functions. At the end of the chapter we address the theatefiestion of approximation
properties of variational approximations.

II.1 The Dirac—Frenkel Time-Dependent Variational
Principle

In this section we give the abstract formulation of the tidegendent variational principle
and discuss its structural properties.

I1.1.1 Abstract Formulation

We consider an abstract Schrodinger equation on a complbgritdspaceH with inner
product(-|-), taken antilinear in its first and linear in its second argntnand with a
HamiltonianH that is a self-adjoint linear operator @ty
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@ _ 1 Hy. (1.1) |11:schroed-eq

dt  ih
Let M be a smooth submanifold &, and foru € M denote by7T,, M the tangent space
atu, which consists of the derivatives of all differentiablehmonM passing through.
We think of M as an approximation manifold on which an approximate smiuii(t) to
the solutiony(¢) of (1.1) with initial dataw(0) = (0) € M is sought. The functiofi—
u(t) € M is determined from the condition that at every timés derivativedu/dt (t),
which lies in the tangent spacg,;) M, be such that the residual in the Schrodinger
equation is orthogonal to the tangent space:

du

—€T.M suchthat < ‘——z—Hu>:0 Voe TLM.  (1.2)

The tangent spacg, M is known to be a real-linear closed subspack ofVe will always

assume that in fact
T,M is a complex linear space, (1.3)11: comp-tang

that is, withv € 7, M, also iv € 7, M. In this situation we get the same condition if
we consider only the real part or the imaginary part of themproduct of (1.2). We will
see, however, that these two cases lead to very differearpirgtations: as an orthogonal
projection onto the tangent space in case of the real paat.sgmplectic projection and
as the Euler—Lagrange equations of an action functionad$e of the imaginary part.

We remark that from a numerical analysis point of view, ctindi(1.2) can be seen
as a Galerkin condition on the state-dependent approémapaceZ,, M.

Historical Note. Dirac (1930) used condition (1.2) without further commendérive the
equations of motion of what is now known as the time-dependartree—Fock method.
Frenkel (1934), p. 253, gives the interpretation as an gahal projection and refers to
the appendix of the Russian translation of Dirac’'s book a&sdtgin of the argument.
Some thirty years later, the Dirac—Frenkel reasoning wksntaip again by McLach-
lan (1964) and enriched by further examples. Condition)(i&.therefore often called the
Dirac—Frenkel-McLachlan time-dependent variationah@ple in the chemical physics
literature, see Heller (1976) and, e.g., Baer & Billing (2DAn theoretical and nuclear
physics, the derivation from Dirac’s quantum-mechanictiba functional and with it the
symplectic viewpoint has rather been emphasized; see Ke€n&oonin (1976), Rowe,
Ryman & Rosensteel (1980), Kramer & Saraceno (1981) and,Felgimeier & Schnack
(2000).

[1.1.2 Interpretation as an Orthogonal Projection

Taking the real part in (1.2), we arrive at the minimum coiadifor the following linear
approximation problem:

du . . 1 . .
d—? is chosen as that € 7, M for which H w— —Hu H is minimal. (1.4)

(Note thatl|w + v — 2 Hul|? = |w — +Hul> + 2Re(v|w — & Hu) + [|v]%.)
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Fig. 1.1.0rthogonal projection to the tangent space.

In other wordsdu/dt is theorthogonal projectiorof %Hu onto the tangent space
7. M. With the orthogonal projection operator orfpM denoted byP(u), we can thus
rewrite (1.2) as a differential equation on the manifaiti

du 1

= Pl Hu, .
T = Plu) o Ho (15) [T-ode-orin]

which isnonlinearunlessM is a linear subspace &{. The (global or local in time) exis-
tence of a solutiom(t) € D(H)N.M can be ascertained only with further specifications
about the operatail and the manifold\1. In the following we make formal calculations
which implicitly assume that a sufficiently regular solutio(t) exists.

[1.1.3 Interpretation as a Symplectic Projection

subsec: sym pro|

The real-bilinear form

is antisymmetric, and is called the canonicalymplectic two-fornon . SinceZ, M is
a complex linear space, for evepyc H there exists a unique

w = P(u)p € T,M suchthat w(v,w) =w(v,¢) YveT,M.

This non-degeneracy of the two-fornmakesM a symplectic submanifoldf H, and
P(u) is thesymplectic projectiooperator ontd,, M. (HereP(u) actually coincides with
the orthogonal projection considered in the previous stutlise) Taking the imaginary
part in condition (1.2) and multiplying with-2h yields
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d
w(v,d—?) :2Re<v|Hu> Vv e T, M. (1.6) |II:ham'I-eq-O
We introduce the Hamilton function as the average of the Haman operator,
H(u) = (u|H | u)

(we use the same symbdl as for the operator). The right-hand side in (1.6) is now
recognized as the derivativi¢? (u)v in the direction ofv. Now, (1.6) rewritten as

(0. %) <ar(uy VoM, (L.7)

is aHamiltonian systeron the symplectic manifoldA with the Hamilton functiorf! (u);
see Marsden & Ratiu (1999), Chap.5.4. Let us state and veasjc properties of this
system.

I'l: t hm ener gy | Theorem 1.1 (Energy Conservation).The total energy H) is conserved along solu-
tions of the Hamiltonian system (1.7) a# .

Proof. We have (with = d/dt)

d . o
E<U|H|U> =2Re(u|Hu) = w(t,i) =0
on using (1.6) withy = @ € 7,,M in the second equation. O

There is also the following important conservation propewthich we first state
briefly and then explain in detalil.

t hm synpl ectic | Theorem 1.2 (Symplecticity).The flow of the Hamiltonian system (1.7) is symplectic.

This means that the symplectic two-fouris preserved in the following sense: gt €
M, and letvy € 7, M be a tangent vector af. Then there is a path(7) on M with
~v(0) = up anddry/dr (0) = vo. Letu(t) = u(t, uo) be the solution of (1.7) with initial
dataug, and denote by

d
u(t) = prud N u(t, (1)) € TunyM
the tangent vector propagated along the solutionug) (note thatv(t) is the solution
with initial datavy to the differential equation linearized@ft, u¢)). Letw(t) be another
tangent vector propagated along the same solution, camespg to an initial tangent
vectorwg atug. Then, the statement of Theorem 1.2 is that

d

Ew(v(t),w(t)) =0. (1.8) [11:synpl-flow
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Proof. By the bilinearity and antisymmetry af we have

—w(v,w) = —w(w,v) +w(v,w) .

dt
Differentiating (1.6) with respect to the inital value, wiatain that this equals

— w(v,w) = =2 Re<w‘HU>+2 Re<v‘Hu;>:0, 0
We will further discuss symplectic and Hamiltonian aspéctSection 11.4.2 where

we consider the non-canonical Hamiltonian structure of eéljeations of motion for
parametrized wave functions.

[1.1.4 Interpretation as an Action Principle

Taking the imaginary partin (1.2) also yields that everyisoh of (1.2) makes thaction

functional
S(u) = / tl<u(t)‘ihcfl—1;(t)—Hu(t)>dt (1.9)
to

stationary with respect to variations of paths on the méahifof with fixed end-points,
because by partial integration and the symmetr§iof
i) - Hu(t)> + <u(t)

5S(u) = /tt (<5u(t) o

- —2h/t] Im ( 3u(t) %(t) - %Hu(t)>dt.

to

du

m%@) - H5u(t)>) dt

The conditiondS = 0 is the quantum-mechanical analogue of Hamilton’s prirecipl
classical mechanics. Also note thfétu) is real if || u(t)||* = Const, as is seen by partial
integration in (1.9).

[1.1.5 Conservation Properties

We know from the Heisenberg equation (1.4.4) that the ave(ay is conserved along
solutions of the Schrodinger equatiordfcommutes with the HamiltoniaH . For varia-
tional approximations (1.2) there is the following critari

Theorem 1.3 (Invariants). Let the self-adjoint operatod commute with the Hamilto-
nianH, [A, H] = 0. If

AueT,M  Vue MND(A), (1.10)

then the average of along variational approximations(t) € M N D(A) is conserved:
(u(t)| Alu(t)) = Const.
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Proof. We have
d
dt

on using (1.2) and (1.10) in the second equality. O

<u|A|u):2Re<Au|u):2Re<Au|%Hu):<u|%[A,H]|u):0

ChoosingA as the identity operator, we obtain the following usefulotiary.

Theorem 1.4 (Norm Conservation).The norm is conserved along variational approxi-
mations ifM contains rays, that is, with € M alsoau € M forall o > 0.

Proof. The stated condition implies € 7, M for v € M, and hence the result follows
from Theorem 1.3. |

11.1.6 An A Posteriori Error Bound

A simple but useful general error bound for variational apgmations can be given in
terms of the distance diét;: Hu, 7, M) in the Hilbert space norm of Hu along the
variational approximatiom(t) to the corresponding tangent space. The error bouad is
posterioriin that it is in terms of the approximatiar(¢) rather than the exact wave func-
tion ¢ (t). This abstract result will be used in Sections 1.4 (for Gaais wave packets),
I11.1 (for spectral discretizations) and 111.2 (for the Leaos method).

Theorem 1.5 (Error Bound for Variational Approximations). If u(0) = ¢(0) € M,
then the error of the variational approximation is bounded b

t
lu(t) — w(t)]| < /0 dist(%Hu(s),Tu(s)M> ds. (1.11)

Proof. We subtract (1.1) from (1.5), so that

d S VA SIS § ith PLlu) =1 —
o (u—1) = iﬁH(u ) —P (u)mHu with  P~(u) =1 — P(u).
Multiplying with u — ¢ and taking the real part gives
d _1d 2 d
lu =l - -l =l = 5 = llu = $II° = Re(u— | 2 (u—¢))

1 1
= Re(u — | ~ P-(u)= Hu) < u— ]| - | P*(u) = Hul

Dividing by ||u — 1|, integrating fromD to ¢ and noting

et oL,y 1 Cqdu 1
dist (g1, TuM) = [P o = || G = 1|
then yields the error bound (1.11). O

For the error in the average of an observaltlalong the variational approximation we
note the bound

[(u| Alu) = (| Al9)| = [(u—o | Au) + (A [u— )| < [lu— | ([ Aull + [ A¥])).
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[1.2 Adiabatic / Born—Oppenheimer Approximation

In the following three sections we turn to basic examplesasfational approximation,
which take us in steps from the full molecular Schrodingguation down to classical
molecular dynamics. We begin with the adiabatic approxiomahat separates the motion
of heavy nuclei and light electrons.

[1.2.1 Electronic Schrodinger Equation
We return to the molecular Hamiltonian (1.5.5), viz.,

Hupot =Tn+T.+ V. (2.1)

In afirst step we ignore the contribution from the kineticrgyef the nucleil'y (vaguely
motivated by the fact that/,, > m), and work with the electronic Hamiltonian

He(SC) = Te + V(Ia ) ’ (22)
which acts on functions of the electronic coordinates (v, . ..,y ) and depends para-
metrically on the nuclear coordinates= (x4, ...,y ). We consider the electronic struc-
ture problem, the Schrodinger eigenvalue problem

He(x)@(x,-) = E(ZC)SI)(ZC,), (23)

typically for the smallest eigenvalue, the ground stategnd\ctually computing eigen-
values and eigenfunctions of the electronic Schrodingeaton is the primary concern
of computatonal quantum chemistry; see, e.g., Szabo & A®(L996), and from a more
mathematical viewpoint Le Bris (2003). Here we just supphbagthis problem is solved
in some satisfactory way.

We fix an eigenfunctio®(z, -) of H.(z) corresponding to the eigenvali&x), and
assume thab(x, y) is of unit L? norm as a function of and depends smoothly an For
fixed nuclear coordinates, the solution of thaime-dependent electronic Sélainger

equation
o,

2 _ g oy, @)

with initial datay (z)®(x, -) is given by

U, (z,y,t) = e POy (2) - D(2,y) . (2.5) [11:elec-tdse-sol ]

[1.2.2 Schrodinger Equation for the Nuclei on an Electronic Energy
Surface

Equation (2.5) motivates thadiabatic approximatiomo the molecular Schrodinger equa-
tion, which is the variational approximation on
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M= {ue 12, ulw,y) = (z) B(a.y), v € L2} 26)

HereL? = L?(R3") denotes the Lebesgue space of square integrable funcepesnd-
ing only on the nuclear coordinatesand L2 , = L*(R*" x R3") is the L* space of
functions depending on both nuclear and electronic coatdm Note that herg/ is a
complex linear space so thai M = M for all u € M. As we show below, the Dirac-
Frenkel variational principle (1.2) then leads t&ehibdinger equation for the nuclei on
the electronic energy surfade:

0 .
%~ Hyy with Hy=Ty+E+Bi+B, @.7)
ANy Yop2
B, = Z:l 17 M (Ve @[ P)r2 pn, Ba= o0, IVa, 22,
with p,, = —iiV,,, whereV,  is the gradient operator with respect to the variables

x,. The HamiltonianH  acts on functions of only the nuclear coordinatesvith the
electronic eigenvalu&’ as a potential. The last two terniy and B, contain derivatives
of the electronic wave functio® with respect to the nuclear coordinatesThey are
usually neglected in computations, first because they greresive to compute or simply
not available and second by the formal argument — to be takémoaution — that they
carry the large masséd,, in the denominator and are of lower differentiation ordearth
the kinetic energy term. The resulting simplified approxiorawith the Hamiltonian

Hgo=1Tnv+ FE (2.8)

is known as theéime-dependent Born—Oppenheimer approximatibdescribes the mo-
tion of the nuclei as driven by the potential energy surféaaf the electrons. It underlies
the vast majority of computations in molecular dynamics.

The term B, can indeed be safely neglected since it can be shown thabmhis-
sion introduces an error that is of the same magnitude aspiv@ximation error in the
adiabatic approximation.

The term By, known as theBerry connectionvanishes for real eigenfunctiords
and, more generally, it can be made to vanish by a gauge tranafion®(z,y) —
@ @(z, y) with ¢ satisfyingV,., (z) = —Im (V,,@|®).2. This transformation of
& changes)(z,t) — e @y (x,t). Note thatd is uniquely determined up to a con-
stant if & is indeed a smooth function af on all of R3Y, but is only locally uniquely
determined ifd is a differentiable function of only on a domain that is not simply con-
nected. In the latter cas®; can cause physical effects that are not retained in the model
otherwise; see the extensive literature on Berry’s phaaeijrgy with Berry (1984) and
Simon (1983).

Derivation of (2.7):We note that fow(x, y) = ¢ (x)®(x, y) we have
N

hQ
Thu = —Z o0, (Azn’l/)@—szznwvzn@"'wAmn@)v

n=1
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and recall that|®(z,-)||2, = 1 for all z. We then obtain from (1.2) with(z,y) =
o(z)®(z, y) for arbitraryp € L2 that

O Nop2
(V0 BV, )12 w)}LTﬁ 0.
On noting thad = V,,, [|#]|7. = 2Re(V,, | ®) 2, we obtain (2.7). O

[1.2.3 Semi-Classical Scaling
seni - cl assi cal |

One property to the success of the adiabatic approximatitimei smallness of the mass

ratio of electrons and nuclei,
2 m -
ef=—=x1 (2.9) [I1:eps

with M = min,, M,,. For ease of presentation we assume in the following thahtsses
of the nuclei are all equalil,, = M for all n. In atomic unitsf =1, m = 1,r = 1,

e = 1) and with the small parameternf (2.9), the molecular Hamiltonian then takes the
form

2
Sl =~ 3 A+ Ho(x)  with Ho(z) = —%Ay V(). (2.10)
We are interested in solutions to the Schrodinger equatfdmounded energy, and in
particular of bounded kinetic energy

2
1
| -~ S A W) = L evau)? = o).

For a wavepacket®?a(z) this condition corresponds to a momentgm~ ¢! and
hence to a velocity = p/M ~ . Motion of the nuclei over a distanee 1 can thus be
expected on a time scade’!. We therefore rescale time

t—t/e,

so that with respect to the new time nuclear motion over dista~ 1 can be expected
to occur at timev 1. The molecular Schrédinger equation in the rescaled timag takes
the form

ov
e = HE W. (2.11) |11:schroed-eps |

The Schrodinger equation (2.7) for the nuclei becomes

2
i~ with Hy = SA 4+ BreBiteBy,  (212)

1
By =Im(V,®| @)z -p, Ba=j3 IV22lZ: ,

with p = —ieV,. We are interested in solutions over times O(1).
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E

Fig. 2.1.Spectral gap.

[1.2.4 Spectral Gap Condition

A small error of the adiabatic approximation will be seen &éodaused by two proper-
ties: in addition to the smallness of the mass ratio= m /M, we require a separation
of the eigenvalugZ(z) from the remainder of the spectrumiH,.(z)) of the electronic
HamiltonianH. (),

dist (E(x), o(He(x)) \{E(2)}) > 6 >0, (2.13)

uniformly for all « in a region where the wavefunction remains approximatetgllo
ized. We will give a result on the approximation error in thriation of a globally
well-separated single eigenvali#x), where (2.13) is assumed to hold uniformly for
allz € R3V,

Remarklt is known that the adiabatic approximation generally kse@down near cross-
ings of eigenvalues. A remedy then is to enlarge the appratkim space by including
several energy bands that are well separated from the rergadmes in the region of
physical interest, e.g., using

M={ue L, uxy) =i (x)Pi(x,y) +b2(x)P2(x,y), 1,02 € L2}, (2.14)

where® (x, -), P2 (z, -) span an invariant subspace of the electronic HamiltoAafx:).
The variational approximation o then leads to a system of coupled Schrodinger equa-
tions:
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zh%—i) =TNY+ B+ Bop + Ve for o) = <Zl) (2.15) |11:schrod-system|
2
with the matrix-valued potential
_ (Vi V2 : N _ : . .
V= with  V;;(z) = (@i(z, ) | He(x) | §j(x, ) L2 (2.16) | I'l:matrix-potential |
‘/21 ‘/22 y

1
and with the diagonal operatoBs;, = (%J I;)Q
J
with @, instead ofd.
The non-adiabatic solution behaviour near eigenvaluesgrgs has attracted much
attention in recent years; see, e.g., Baer & Billing (20@)mcke, Yarkony & Kodppel

(2004), and Lasser & Teufel (2005).

), whereB" are defined as; in (2.7)

[1.2.5 Approximation Error

We derive an error bound of the adiabatic approximationiloaks for a modified Hamil-
tonian where the Coulomb interactions of the nuclei are ifiedl to smooth bounded
potentials. We assume

IVoV(z,y)| <Cy  for zeR™N, ye R (2.17)

and consider initial data on the approximation spAd¢ef (2.6),

Wo(z,y) = vo(z)®(z,y)  with [|[Hvoll < Co, [l =1. (2.18) [11:init-bound|

We consider the adiabatic approximatiof) = u(-, -, t), with initial data?,, determined
by the time-dependent variational principle:

ou ou 1

2L eM  suchthat <v = - EHmolu> =0 YoeM. (219
We know already that
u(@,y, t) = v(z, )P(x,y), (2.20)

where ¢ (z,t) is the solution of the nuclear Schrodinger equation (2\iR2h initial
datawy(x). This is compared with the exact solutidr(t) = ¥(-,-,t) of the molecu-
lar Schrddinger equation (2.11) with initial dafg(z, y) = o (2)P(x, y).

Theorem 2.1 (Space-Adiabatic Theorem, Teufel 2003Under the above conditions,
the error of the adiabatic approximation is bounded by

lu(t) — @) <C(1+t)e for t>0,

where(C is independent of andt and initial data satisfying (2.18), but depends on the
gapd of (2.13) (uniform forz € R3Y), on bounds of partial derivatives with respect to
x up to third order of the eigenfunctio® and on the bound§'y of (2.17) andCy of
(2.18).
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Teufel (2003) gives a more general result, including thes edshigher-dimensional in-
variant subspaces as in (2.14), and a wealth of relatedythedhe global version stated
above, the result remains valid for the time-dependentBOppenheimer approximation
(2.8), with the same proof after eliminatirfe; by the gauge transformation discussed
after (2.8). This is no longer true for local versions of theult where the eigenfunction
@ is defined only on a domain that is not simply connected.

The result is also related to the time-adiabatic theoremarhE: Fock (1928) and
Kato (1950), which states that in a quantum system with algltme-varying Hamilto-
nian a wave function that is an eigenfunction initially, epgmately remains an eigen-
function of the Hamiltonian at any instant for long times.

Proof. We letH = H¢

mol

for brevity, so that? () is a solution to

.4
255 = HVY.

With the orthogonal projectiof onto. M, we reformulate (2.19) as

ie% — Ku with K—PHP*,

noting thatK is a self-adjoint operator oM. We then haveu(t) = e ®*&/cy, =
Pe~K/ew, € M, and by the variation-of-constants formula for2 (v — ¥) =
H(u—-¥)— (H - K)u,

1 [t
u(t) (1) = —— i et H/E(H — K)u(s) ds
t
— _% efi(tfs)H/s(H _ K)PefisK/sgpo ds .
0

We note that H — K)P = P+HP (with P~ = I — P the complementary orthogo-
nal projection). The key idea is now to wrife- H P essentially as a commutator with
H, which becomes possible by the gap condition (2.13). Lemide&low tells us that
PLHP = ¢[H,G] + £2 R with operators and R that are bounded independentlysof
in appropriate norms as stated there. The remainderd¢&Rimmediately gives ad(¢)
bound on time intervals of length(1) as desired. We then have

t
u(t) _ !p(t) _ Z-e—itH/a/ eisH/a [H, G] e—isH/a .eisH/a e—isK/a Wy ds + O(t&),
0
where we observe the key relation to gain a faetor
eisH/s [H G]efisH/s — e i (eisH/s Ge*isH/s)
’ ds ’

We now use partial integration and note

di(eisH/s efisK/swo) _ ieisH/s (H _ K)PefisK/sgjO )
S 9
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Expressing once agaiif — K)P = P+ H P, we obtain

ult) — W(t) = £ Ge™ /=y — e~

t
—z’/ e t=9H/e GpLH P e K5 W, ds + O(te) . (2.21) [11:ad-error-formla]
0

The result now follows with the estimates of Lemmas 2.2 ad 2. O

It remains to state and prove the two lemmas to which we redarrthe above proof.
They use scaled Sobolev norms of functiond®gf or R3 x R3~, The squares of these
norms are defined by

el - = lleVael® + llell?,
loll3.. = lle* Azl + lll?

where the norm on the right-hand side is fienorm (theL? orLiyy norm, as appropri-
ate).

Lemma 2.2. The projected Hamiltonia®- H P can be written as

PYHP =¢[H,G] +€°R (2.22)

where the operator& and R are bounded by

1G] < Cr¥lve,  [IRE] < Co[#]l2e (2.23)

forall ¥ € C5°(R3N x R3L). Moreover,P+ H P is bounded by

|PLHPU| . < Ce W @24)

Proof. In the following we writeV = V, andA = A, for the gradient and Laplacian
with respect to the nuclear coordinates

(a) We begin by computing+ H P for H = —%A + H.. The orthogonal projection
P ontoM is fibered as
(P¥)(z) = P(z)¥(x,-),
whereP(z) is theLg—orthogonaI projection onto the span of the eigenfuncfin, -) of
the electronic Hamiltoniad/, (x). We have, fom € L2,

P(ff)n = <¢(1‘, ) | 77) (P(;U, ) )

with the inner product of.?. Sinced(x, -) spans an invariant subspacetff(x), we have

Pt (z)H,(z)P(z) = 0, and hence, fo¥ € L2,

2 2
PrHPY = —% PTA(PW) = —e2P+(VP) - VW — % PH(AP)W .
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For the first term on the right-hand side we note, ug®g®) P-¥ = (Vo | P-¥)¢ and
Pto =0,
Q:= -P+(VP)= -PY(VP)P.

We thus obtain
P*HP =¢Q eV +e°Ry, (2.25)

whereR(z) = —4P(x)*(AP)(z) is bounded or.? uniformly in z € R3Y, provided
that the eigenfunctio® has bounded derivatives with respectztoWe also note that
(2.25) implies the bound (2.24).

(b) We construct(x) such that

[He(2), F(2)] = Q(z) . (2.26)

Writing H, as an operator matrix with blocks correspondingioand M+,

_( £ 0 ; 1 _ pl 1
H€—<O Hﬁ) with H; = P~H.P—,

we can rewrite (2.26) as

E 0 F Fio _ 0 0
0 HY '\ Fa Fy Q21 0
which is solved by setting’;, = 0, Fi» = 0, F»o = 0 and determinings; = P+ FP

from
H}Fy — FpE = Qo .

By the spectral gap condition (2.13), this equation has guesolution, and we thus
obtain the solution to (2.26) as

F(z) = (H (z) - E(2)) " Q(x).

This is bounded irLfJ uniformly for z € R3" by the uniform gap condition, and so are
VF(z) andAF (z).

(c) We next show that the commutator Bf = —%A + H, with F'is a small pertur-
bation to[H., F] = Q. For this we note that

52 52
[—5A,F] =—eVF-eV — ?AF(x),

so that
[H,F]=Q —¢Ry, (2.27)

whereR; is bounded by| R1¥|| < ¢1||¥||1, forall &.

(d) We set
G=F-eV (2.28)
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and show that the commutator with equalsy) - £V up to a small perturbation. By (2.27)
we have, using the Leibniz rule of the commutator,

[H,G] = [H,F]|-eV+F-[H,eV]
= Q- -eV—eRy-eV—cF - -VV.

For the term with the potentidl we recall assumption (2.17), which bound%’. The
term@ - €V is the same as in (2.25), and hence we obtain the desired (2<22) with
R=Ro+ Ry -eV+ F-VV.The bounds (2.23) are immediate from the construction of
the operatorsr and R. O

We also need the following regularity result in order to ud24) in (2.21).

Lemma 2.3. In the situation of Theorem 2.1, we have

[u)ll2.e < C (|1H ol +1)  for ¢>0.
Proof. We use the bounds, far® € M,

[4Pll2,e < cllPllz,e < C (IHZ¥N + 191)

for which we omit the straightforward derivation. By (2.26)e adiabatic approximation
is given asu(t) = (e~ /2y )®, and the above inequality thus yields

lu(t)|| < C (|| Hye ™ 5/=ypg|| + ko) = C(|[Haoll + 1),

which is the stated bound. O

11.3 Separating the Particles: Self-Consistent Field
Methods

The remaining high dimensionality requires further modaluctions. The many-body
wave function is approximated by appropriate linear coratiams of tensor products of
single-particle wave functions. The simplest case arisegpproximating the dynamics
of the nuclei by a single tensor product, which yieldstihee-dependent Hartree method
This model describes the motion of each particle driven lgyrttean field of the other
particles.

Its antisymmetrized version, suitable for electron dyrenis known as théime-
dependent Hartree—Fock methdthe equations of motion for the orbitals were derived by
Dirac (1930) in what is the historically first applicationtbf time-dependent variational
principle. This method is the time-dependent counterpfatie stationary Hartree—Fock
method, which uses antisymmetrized products of orbitapfaroximate eigenfunctions
of the Schrodinger operator and is the basic approachdétretéc structure computations;
see, e.g., Szabo & Ostlund (1996).
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Taking linear combinations of tensor products or theirgmtimetrizations yields the
multi-configurationtime-dependent Hartree and Hartree—Fock methods, putfdriy
Meyer, Manthe & Cederbaum (1990). In this section we desdhlese various methods,
derive the nonlinear equations of motion and discuss sortteeafproperties.

The model reductions of this section can be viewedbasrank approximationso
the high-dimensional multi-particle wave function. Indepently of the developments in
quantum mechanics, low-rank approximations to huge nestramd tensors have been
widely used as computationally viable approximations imynather fields including, for
example, information retrieval, image compression, arithappricing. It seems, however,
that using the time-dependent variational principle fev-l@ank approximations in areas
outside quantum mechanics has been considered only ne¢iioith & Lubich 2007,
Nonnenmacher & Lubich 2007, Jahnke & Huisinga 2007).

[1.3.1 Time-Dependent Hartree Method (TDH)

We consider the Schrodinger equation for the nuclei obthfrom the Born—Oppenheiner

approximation,
o

ihEth% H=T+V (3.1) [11:schrod-nuc-V
2
with kinetic energyl’ = — ij:l % A, and a potential/ (z1,...,zy) (as an ap-
proximation to an electronic energy gurfal(a’éml, ..., zn)). We assume that the domain

D(V) containsD(T') = H?(R3M).

Hartree Products. We look for an approximation to the wave function of the tanso
product form

V(x1,...,xn,t) = a(t)pr1(xr,t) ... on(TN, t)
with a scalar phase factar(t) and with single-particle functiongor molecular or-

bitals) ¢,,(z,,t). We thus consider the variational approximation (1.2) anitifinite-
dimensional manifold

M={uePR™) :u#£0,u=ap;®...0pn, a€C, p, € L*(R*)} (3.2) [Il:hartree-nf |

(or instead we might consider tensor product3 &ffunctions inL?(R)). The representa-
tion ofu € Masu = a1 ®...Q ey is notunique: for any choice of complex numbers
¢, # 0, u remains unaltered under the transformation

a

On — CnPn , a— —. (3.3) |

|:hartree-trf |

C1...CN

Tangent Functions. Although we do not have a unique representation of functions
the Hartree manifold\, we can obtain a unique representation of tangent functions
This is what matters in deriving the equations of motion fa& $ingle-particle functions.
Considern = a ¢; ®...® px with a of unit modulus and alp,, of unit L? norm. Every
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tangent function: € 7, M (for the momenty: is just a symbol for any tangent function)
is of the form

U=0p1®...0 N +aP1 QP2 ®..0¢pN+...+ap1®...0pn_1Q¢n (3.4) |I | : hartree-tangent
wherea € C andy,, € L2. These turn out to be uniquely determined:bgind the fixed
a, 1, ..., on if we impose thegauge condition
(On | Pn) =0. (3.5) |I1:hartree-gauge

Indeed, taking the inner product of both sides of (3.4) with- a o1 ® ... ® ¢y and
using (3.5) and|¢,, || = 1 anda = 1/a, determine% as

a={(uli)a. (3.6) [Il:hartree-adot-0

Taking the inner product with the function in which thth factory,, in u is replaced by
someL? function?,,, viz., withap; ® ... ® Y, ® ... ® oy € T, M, determinesp,,
uniquely by the equation

(Un | @n) +aa(0n | on) =(ap1 ®...00,®...Q0 pnN | ) Vi, € L*. (3.7) |II:hartree-phi dot -0

Equations of Motion for the Single-Particle Functions.We now consider the variational
approximation (1.2) on the Hartree manifold, viz.,

du 1
<v E_EHU>:O Vv e T, M. (3.8) |II.hartree-qvar
Applying the above argument with = du/dt € 7, M and using (3.8) to replace
u by %Hu in (3.6) and (3.7), we obtain evolution equations for thetdes in u =

a1 ® ... 0 PN
da 1
i <u‘EHu>a
O 1
<19n g;> = <G901®--.®19n®...®<pN‘EHu> (3.9) |II:hartree-weak-eom|
1 2
—<U‘%Hu><t9nl<pn> Vi, € L7,

With the total energy: = (u | H | u), which by Theorem 1.1 is constant in time, and with
themean-field Hamiltoniafor thenth particle,

(Hyn = (n | H[¢n)  with ¢, =) e; (3.10) [I1:neanfiel d-H
Jj#n

(the inner product on the right-hand side is over all vagalgxcept,,), the equations of
motion become the trivial linear constant-coefficienteliéntial equatiotiii da/dt = ka
and
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O
ih%:<H>ns@n—mpn. (3.11) |II:hartree-phi dot-H

Multiplying with -, and noting

%> =2 Re<<pn

ot %(<H>n90n_"ﬂpn)> :O,

we see thap,, indeed remains of unit norm, as was assumed in the derivation

The last termxyp,, in (3.11) can be dropped if we rescale — e*i"t/%j. For a
HamiltonianH = T + V as in (3.1), we obtain for alf,, € L?(IR?) that are orthogonal
to v,

4 2 = 2Re(
L gal? = 2Re( 0

ﬁ2
T oar Amn¢n> )

<cp1®...®19n®...®<pN‘Tu>:<19n A

and hence for such,, we have by (3.9)

(o

where the mean-field potentidl),, is defined in the same way as in (3.10) withnstead
of H. It follows that the right-hand expression in the inner proidis a multiple ofp,,.
This term adds ta = du/dt in (3.4) only a scalar multiple of and hence yields only a
modified phase factar in u. Let us summarize the result obtained.

L Opn R
Uy v

Ag, pn — <V>n<pn> =0,

Theorem 3.1 (Time-Dependent Hartree Method)For a Hamiltonian (3.1), the varia-
tional approximation on the Hartree manifold (3.2), fortial data u(z1,...,2n,0) =
¢1(21,0) ... on(zN,0) With ¢, (-, 0) of unit L? norm, is given as

w(zy,...,zN,t) = a(t) p1(z1,t) ... on (TN, 1),

wherela(t)| = 1andy, (z,,t) are solutions to the system of nonlinear partial differahti
equations

ihatpn*— - A +(V) (3.12) [I1: hartr ee-phi dot
ot 2MM, ~oPn n¥n - ‘ : P
This holds on time intervalg < ¢ < t on which a strong solution to this system exists,
thatis, fore,, € C1([0,7], L*(R?)) N C([0,7], H*(R?)). O

The mean-field potentiald”),, are high-dimensional integrals. Their computation is
reduced to low-dimensional integrals for potentials thrat(@r more often, are approxi-
mated by) a linear combination of tensor products,

Vien,...,an) = > cxvy (@) ..ol (@n), (3.13)
k=1

for which

V=Y ] [ o) o) da.

k=1 ji#n
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Equations (3.12) look like usual Schrodinger equations since the mean-field po-
tential (V'),, depends on the single-particle functions of the other glagj we obtain a
coupled system of low-dimensionabnlinearpartial differential equations. A strong so-
lution to (3.12) exists globally for all times > 0 for example in the case of a smooth
bounded potential with bounded derivatives. This is showrPkrard iteration in the
Sobolev spacél?(R3)" on the integrated equations

t
<pn(t) _ e_itTn/hQDn(O) +/ e~ i(t=5)Tn /R <V>n(8) QPn(S) ds
0

whereT,, = —% A, . By the same argument, the solution then Besregularity for

arbitraryk whenever the initial data is iF/*.

Remark 3.2 (Principal Bundle Structure). On the Hartree manifold of (3.2),y =
(a,p1,...,pnN) are not coordinates, but the underlying mathematical stracdere and
in the following subsections is that ofmincipal bundle which is a familar concept in
differential geometry that we now describe. There is a mapy” — M from a manifold
N ontoM, so that every: € M can be represented, though not uniquely, as

u=x(y) forsomeyec N.

(We havex(y) = a p1 ®...® ¢y on the Hartree manifold.) The magpis invariant under
the action of a Lie groug on NV, which we denote by : G x N’ — N:

x(g-y)=xly) VgelG, yeN.

In the Hartree method, the group is the componentwise nlighitive groupG = (C*)V
(with C* = C \ {0}), and the action is given by (3.3).

Moreover, there is gauge mapy, which at every, € A associates to a tangent vector
y € T,N an element/(y)y in the Lie algebray of G (g is the tangent space at the unit
element ofG). The linear mapy(y) : 7,N' — g is such that the extended derivative map,
with u = x(y),

TN — T, M x g 2 g (dx(y)y, 7(y)y)  is an isomorphism.

Hence, under the gauge conditigfy)y = 0 (or with any fixed element off instead of
0), y € 7,N is determined uniquely by andu € 7, M. In the Hartree method, a gauge

o . Y

map is given byy(y)y = ({¢n |¥n)),_, € CV.

[1.3.2 Time-Dependent Hartree—Fock Method (TDHF)

Slater Determinants. For a system ofV identical fermion$ the wave function is anti-

symmetric (see Sect. 1.5.2) and we wish to retain this ptgperthe approximation. We

! Typically, this refers to electrons. In the notation of Skét3, their coordinates ang, . . ., yr.,
but we will denote them by, ...,z in this subsection and keep in mind that theare not
coordinates of nuclei here.
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therefore look for an approximate wave function in an amtisyetrized tensor product
form, that is, as &later determinant

1 N
(x1,. .., 2N, t) = at) — det(gpn(xj,t))nyjzl

VNI

with a scalar phase facta(t) and with orbitalsp,, (x, t) that are time-dependent functions
of z € R3. In the following we write the scaled determinant as the vespigpduct

1 .
wlA...A(pn:W GXS: SigN(0) Yo(1) @ - - - @ Po(N) 5
[ N

where the sum is over all permutations{df, ..., N}. We consider the variational ap-
proximation (1.2) on the manifold

M={uecL*RN): u#0,u=ap1 A...ANon, a €C, p, € L*(R?)}. (3.14)

The representation af € M asu = ap; A ... A vy again is not uniquen remains
unaltered under the transformation by any invertiNlex N matrix, A € GL(N), by

¥1 ©1
— A

PN PN

a

7 det(4)

a

We may therefore choose to work with orthonormal orbitals:

(bnlpj) =0y; forall n,j. (3.15)

In particular, we then havieu|| = |al.

Tangent Functions.Consideru = a1 A ... A on With a of unit modulus and with
orthonormal orbitals,,. Every tangent function € 7, M is of the form

U=ap1 N...NoN+ap1 A2 A..ANpn+...+api A...ANon_1 Aon (3.16) |II:hf-tangent

wherea € C andy,, € L2. These turn out to be uniquely determined:bgind the fixed
a, 1, - - -, e, If we impose the gauge condition

(onlej) =0  forall n,j. (3.17) [11:nf-gauge

Indeed, taking the inner product of both sides of (3.4) witk a o1 A... Ay and using
(3.15) and (3.17) and = 1/a, determines again as

o= tulio. .18)

Taking the inner product with the function in whigh, is replaced by somé&? func-
tion ¥J,,, determinesp,, uniquely by the analogue of (3.7), where now simply the wedge
product replaces the tensor product:
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(O | on) +Ta {0y | @n) = (a1 Ao . AOy A AN |0) VO, € L2, (3.19) |II:hf-phidot-0

Equations of Motion for the Orbitals. The equations of motion for the orbitals in the
variational approximation (1.2) on the Hartree—Fock madif\1 in the weak form there-
fore still are of the same type as in (3.9), where justormally replacesz. With the
constant total energyf’ = (u| H | u), we have

%>:<aspl/\.../\19n/\.../\<pN|Hu>—E<19n\cpn> V4, € L*. (3.20) [I1: hf-weak- eom|

To proceed further, we now consider a Hamiltonian compos$étkatical one- and two-
body Hamiltonians:

N 9 N
H=Y (_j_mazj +Uj) W =S5 W (B2Y)
i—1 i=1

k<t k<t

with identical one-body potential§;(z1,...,2n) = U(z;) and identical symmetric
two-body potentials

Wkg(xl, e ,CL‘N) = W(xk,acg) = W(xg,l‘k) .

The situation of primary interest is that of the electrontb®dinger equation (2.4), where

e2

3
W(xay)_|x_y| (xayER)

is the Coulomb potential of electron-electron interactemdU («) describes the Coulomb
interaction between an electronzat R? and all nuclei at fixed positions.

We abbreviate the single-particle operatoiSas —% A, + U, and writeS; when
it is considered as an operator acting on the variablef functions of(x1, ..., zn).

We return to (3.20) and consider functiafys € L?(R?) that satisfy the orthogonality
condition

(In @) =0 foralln,j. (3.22) [1I:hf-orth-theta]

Using the definition of the wedge product and the orthogtniadiations (3.15) and (3.22)
we calculate

1
<<p1/\...A19n/\...Ag0N|Sl|<p1/\.../\<pN>=N<19n|54pn>.

Since the same result is obtained for, . . ., S/, we obtain

N
(1A N A Aow [ DTS5 1A Apn) = (9] Sen). (323)
j=1

For the two-body interaction we obtain similarly, using ofdéion the symmetry ofV/,
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<(p1/\.../\’l9n/\.../\g0]v’ngy(pl/\.../\goN>

2

= 5 (0000 Wm0 = o0 Wy ).

and the same result for the otHé%.,. Hence we have
(o1 Ao A A A | ZWkg’gol/\.../\(pN>
k<t
= <19n ’ Knpn — Z an¢j> (324)
Jj#n

with theHartree potentialK,, and theexchange potential¥,,; given as

Kalw) = 32 [ W)l dy (3.25)
j#n
Xnj(z) = W (2, y)8;(y) enly) dy.- (3.26)
R3
Substituting (3.23) and (3.24) into (3.20), we thus obtfinall J,, € L?(R?) satisfying
the orthogonality relations (3.22),

(o

It follows that the right-hand expression in the inner pradis in the linear span of
©1,--.,nN. Since adding such a term p,, /0t adds toi = du/dt of (3.16) only a

scalar multiple ofu and hence changes only the scalar phase fagtthre effect of this

term is put intoa and we set the right-hand expression in the inner productto. 0On

multiplying with ; and interchanging andj, we then further obtain

%> <_%>7
ot (% ot =0,

. Opn
j#n

d
E<¢n ‘ ‘pj> = <‘pn

so that the orthonormality relations (3.15) are presergedlif times. Since we know that
the variational approximation(t) conserves the unit norm, the phase faet@r then
remains of unit modulus. We summarize the result as follows.

Theorem 3.3 (Time-Dependent Hartree—Fock Method, Dirac 180). For a Hamilto-
nian (3.21), the variational approximation (1.2) on the ae—Fock manifold (3.14), for

initial data u(z1,...,zx,0) = ﬁ det (QOn(ij,O))r]:]jzl with ¢, (-,0) satisfying the

orthonormality relations (3.15), is given as
1 N
u(z1,..., 2N, t) = a(t) i det (¢n(z;, t))n,j:1 )

where|a(t)| = 1 andy,(z, t) are solutions to the system of partial differential equasio
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2
2t =~ Mg+ Upn + K — Y X (327)
Jj#n
which is nonlinear through the Hartree and exchange po#atgiven by (3.25) and
(3.26). This holds on time intervals < ¢ < ¥ on which a strong solution to this sys-
tem exists, that is, fap,, € C1([0,7], L*(R3)) N C([0,7], H*(R?)). The orthonormality
(3.15) of the orbitals is preserved on the whole time interva O

Comparing (3.27) with the Hartree equations (3.12), we tizdé the only, but essential
difference is in the presence of the fermionic exchangeseYmnyy;.

Global existenc®f strong solutions to the equations of motion (3.27) in theecof
Coulomb potentials is shown by Chadam & Glassey (1974). Weedf their argument
runs as follows: first it is shown by Picard iteration thatugimins in H2 existlocally in
time, where the growth in thE2 norm is exponential in terms of a bound of tHé norm
of the solution. Since thé&l! norm of a strong solution can be bounded by the constant
total energy(H), it follows that theH! norm remains in fact bounded for all times and
the H2 norm grows at worst exponentially.

Spin Orbitals. Electrons are distinguished by their spin which can takewloevalues up
(1) and down (). In a system withK electrons of spin up any — K electrons of spin
down, the separable approximation with the correct antisgtny properties is

u=a(p1A... Npr) @ (i1 A .. ANpN) (3.28) |II:hf-m‘-spin

with a € C, p,, € L*(R3). The equations of motion for variational approximations of
this type can be derived in the same way as above and turn betittentical to (3.27) if
the interpretation of inner products is modified as follows: extend each orbita,, to
aspin orbital @, = (¢n, s») With spins,, € {1, | }. For any observabld of orbitals we
define
_ _ (on|Alpj) if sp=s;,

<(pn|A|(pJ>_{ 0 else
With this interpretation of all arising inner products, #rguations of motion (3.27) remain
valid for the spin orbital&,,, with non-vanishing exchange terms remaining only between
spin orbitals of the same spin.

As opposed to thenrestrictedHartree-Fock approximation just described, the
stricted Hartree-Fock method in the case of an even numbeaf electrons assumes an
equal numbetV/2 of electrons with spin up and spin down with the spin orbitals, 1)
and(p,, |) forn =1,..., N/2, thatis, with thesamespatial orbitalp,, for both spin up
and spin down. The approximation to the wave function is thasen of the form

u=a(P1N...Non/2) @ (1 A... Apn/2) (3.29) |11:hf-nf-rhf

in the restricted Hartree-Fock method. For an initial stdtthis type, it is seen that this
restricted form is preserved for all times in the equatiohmotion (3.27) of the unre-
stricted Hartree-Fock method witN/2 electrons of spin up and//2 electrons of spin
down. Therefore half of the equations can be dropped in His.c
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[1.3.3 Multi-Configuration Methods (MCTDH, MCTDHF)

| : subsec: nttdh]|

Multi-Configurations. We consider again the Schrodinger equation (3.1) for thetenu
which are supposed to be distinguishable by their diffetygrgs or by their well-separated
positions. It is to be expected, and has found ample confiom&t computations, that a
better approximation to the wave function can be obtaineddiyg a linear combination
of tensor products instead of just a single tensor prodags done in the time-dependent
Hartree method of Section 11.3.1. We therefore consider@apmations

Y(ar, o t) &Y g e @) @ (@)

(J15e-3N)
= a,(t)Ps(x,1). (3.30)
J

Here, the multi-indiced = (j1,...,jn) vary forj, = 1,...,r,, n = 1,..., N, the
a;(t) are complex coefficients depending only gnand the single-particle functions
cpg-:) (z,,,t) depend on the coordinates € R? of particlen and on timet. Alternatively,
we might take Hartree products NV functions depending on,, € R.

This is a model reduction analogous to low-rank approxiomatif matrices, where a
large system matrix is replaced by a linear combination nkyh matrices ® w, or to
low-rank approximation of tensors by linear combinatiohsank-1 tensors; ®. . .Quy.

In the multi-configuration time-dependent Hartr¢ICTDH) method proposed by
Meyer, Manthe & Cederbaum (1990) and developed further saritheed by Beck, Jackle,
Worth & Meyer (2000), the Dirac—Frenkel time-dependentataynal principle (1.2) is
used to derive differential equations for the coefficiantsand the single-particle func-
t|ons<p . The MCTDH method determines approximations to the wavetfan that,
for every timet, lie in the set

M= {uEL2 R3M) u—ZaJcp -®go§-f§) with ay € C, cpj:) eLQ(Rg)}

with multi-indicesJ = (j1,...,jn) ranging overj, = 1,...,r,. This setM is not a
manifold, but it contains a dense subdet that is a manifold and is characterized by a
full-rank condition to be given below.

The representation of € M by a coefficient tensod = (a;) and single-particle

functions® = (cpgn)) clearly is not unique: the transformation
SOJTL - 903 Z S k (pk

ay—ay = Z o Z aI(S(l));}Jl (5™ )ZN N

i1=1 inN=1

yields the same function for any choice of nonsingular matricég), ..., S™). We
may assume that the 0rbitad>§:) corresponding to the same particl@re orthonormal:
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W o™y =85 kny Gnikn =1, n=1,...,N. (3.31)

Tangent Functions.Consider a differentiable pathi(¢), &(¢)) of coefficients and single-
particle functions representing a patft) on M. Then, the derivative is of the form

u_ZaJ¢J+ZZ<p (3.32)

n=1j,=1

with the Hartree productd; = ®fj 1 cpgn) and with thesingle-hole functions

i = @39

Tn—1 Tn41

- 3 PIRP IR 3 e @

Jji=1 —1=1jn41=1 in=1 k#n

where the superscript) on the inner product indicates that thé inner product is taken
only with respect to the variablg,, leaving a function depending on all the other variables
g With k # n.

Conversely, thé ; are uniquely determined byand(A, ®) if we impose the orthog-
onality condition

GG =0, Guka=Lor n=1 N, (334)
which together with (3.31) implies
iy = (@) (3.35)

Taking theL? inner product of (3.32) Withy;gl‘) over all variables except,, as indicated
by the superscript-n), then gives

> ol el = (ol

Jn=1

u_za,¢J> " (3.36)
with the hermitian, positive semi-definiteensity matrices

ST venby o, = Y. @3

in,Jn=1

The orthonormality relations (3.31) allow us to expressahiies of the density matrices
in terms of the coefficients;:

Tn—1 Tn+4+1

plnﬂn Z Z Z Z aﬂl »»»»» Jn—1yin,Jng1,e 0N Qj1,.00N - (3-38)

Jji=1 Jn—1=1jn41=1 jn=1

Thegblg.:) are thus uniquely determined from (3.36) underftiierank conditionthat
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o™ is an invertible matrix for eaclh = 1,..., N . (3.39) [full-rank
(In view of (3.38), a necessary condition for this propesty,i < Hk;én Tk-)

The MCTDH manifold. With the above construction of the; and¢§.:), one can con-
struct local charts on

M = {ueLQRgN :u—ZaJcp . 30;]5) with a; € C and

(") € L?*(R?) satisfying the orthonormality condition (3.31)
and the full-rank condition (3.3%), (3.40)

making this set an infinite-dimensional manifold, for whible tangent space ate M
consists of the elementsof the form (3.32). We also note thit||? = > ; |a|?.

Equations of Motion for the Multi-Configuration Time-Depen dent Hartree Method.
The MCTDH method uses the time-dependent variational jpi@€1.2) on this approxi-
mation manifoldM. The equations of motion are thus obtained by substitu}g’rf@u for
w in (3.35) and (3.36), and so we have the following result.

Theorem 3.4 (MCTDH Method; Meyer, Manthe & Cederbaum 1990). The varia-
tional approximation on the MCTDH manifold (3.40) is given(B8.30), where the coef-

ficients and single-particle functions are solutions to $iyetem of coupled ordinary and
partial differential equations

da . .
md—t] > (@) H|Pk) ax | VI = (1, in) (3.41)

K

9 (n)

90 n < n 71 n -n n
ih—p - Pt ZZ ) L W TH ) g (3.42)

n=11ln

n=1,....rp, n=1,...,N.

This holds on every time interval on which a strong solutiorihtese equations exists.
Here, the Hartree product®, the single-hole function$§f), and the density matrices
p™ are defined in (3.30), (3.33), and (3.38), respectively. Jiipgerscript {n) indicates
that the inner product is over all variables except andP(™ is the orthogonal projector
onto the linear span qf:g"), et 0

We note that the projectdP() is given asP(™y = >, 505-:) <<p§:) |9)(™) | with
the inner product over the variabig . '

For a smooth bounded potential with bounded derivativeis, ghown by Koch &
Lubich (2007) that a strong solutlopl(") e C1([0,%), L?(R3)) N C(]0,7), H?(R?)) to
the MCTDH equations exists either globally for all times prta a timet where a density
matrix p("™) becomes singular.
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At a singularity of a density matrix("), the equations of motion break down. To avoid
such problems in computations, the density matrices aralysegularized tg(™ + I
with a small parameter. Although such regularized solutions exist for all timegear-
singularity can still cause numerical problems, in patécin the step size selection of a
time integration method.

The MCTDH method has been used successfully for accurabefypating the quan-
tum dynamics of small molecules in a variety of chemicalatittns such as photodisso-
ciation and reactive scattering, for problems involving @4 nuclear degrees of freedom
and one or several electronic states; see, e.g., Raab, Wetler & Cederbaum (1999).

The complexity of the method grows exponentially with themoer of particles: there
arery coefficientsa; if ,, = r orbitals are taken for each particle. Several variants and
extensions of the MCTDH method have been designed for thepatational treatment
of larger systems, such as the coupling with Gaussian wakepafor secondary modes
(Burghardt, Meyer & Cederbaum 1999) and ttierarchical, cascadior multilayerver-
sions of MCTDH (Beck, Jackle, Worth & Meyer 2000, Wang & Te@D03) with which
particular systems of up to 500 degrees of freedom have beated.

Hierarchical MCTDH Method. Considering for simplicity a system witN = 2~ par-
ticles, the binary cascadic MCTDH method determines anamation to the wave

function in the form
=Y anp® o)

7,k=1

where, for a binary numbeB = (by,...,b¢) with b,,, € {0,1} and¢ < L, we set
recursively

T
B,0 B,1
=Y af PV @Y
jk=1

and for¢ = L we have the single-particle functions. The variationalragnationw is
thus built up from a binary tree, with the single-particladtions sitting at the end of the
branches. This approach uses orlyV instead of-"V coefficients.

The orthogonality relations (3.31) and (3.34) can now beasgg on each level: at
the final level for the single-particle functions and at ttieeo levels by

(Pg|801 E:a’lgk zyk f
J,k=1

(pé|901 E:a’lgk zyk
J.k=1

The derivation of the equations of motion is then analogotisdt of the MCTDH method
given above, with recurrences climbing up and down the toe¢hie computation of the
required inner products.
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Multi-Configuration Time-Dependent Hartree-Fock Method (MCTDHF). For elec-
tron dynamics, a multi-configuration extension of the TDHE&thwod is obtained by using
the time-dependent variational principle for approxiroas of the form

u = Z Cirojn Pir N o NPy (3.43)

1<j1<...<jN<K

with K > N. The sum is over aI(ll\{[ subsets withV elements of 1,..., K'}. The

equations of motion of the MCTDHF method for a Hamiltoniar@ are those of the
MCTDH method With(p;n) = ¢, independent of: and with an antisymmetric tensor:
for every multi-indexJ = (j1,...,jn) and permutatiomr € Sy and witho(J) =
(Jo(1ys - Jo())s

Qo(J) = Slgr(O') ay.

We refer to Zanghellini, Kitzler, Fabian, Brabec & Scrin2D03) and Koch, Kreuzer &
Scrinzi (2006) for uses and properties of the MCTDHF appnoac

No Theoretical Approximation Estimates.While the neighbouring sections close with
theoretical results on the approximation error, appayermtisuch results are available for
the methods considered in this section. One might hopetibahtilti-configuration meth-
ods converge to the exact wave function as the number of eoafigns is increased to in-
finity, but to date no such result exists. One obstacle to awtnvergence result is the fact
that the density matrices”™ become more and more ill-conditioned as more nearly ir-
relevant configurations are included. Another difficulgslin the time-dependent orbitals
whose approximation properties are not under control. . 866 we show, however, that
for afixednumber of configurations, the variational approximatiogussi-optimal in the
sense that its error — on sufficiently short time intervals baunded in terms of the error
of the best approximation to the wave function by the givember of configurations.

Notwithstanding the deficiencies in theory, the methodssittared in this section
have proven their value in computations on realistic chah@ind physical systems — the
tool apparently works.

1.4 Parametrized Wave Functions: Gaussian Wave

Packets

I'l:sect:gw
A further modelling or approximation step consists in repig the wave function by
a function that depends only on a finite number of real or cemplarameters. The
time-dependent variational principle then yields evalntequations for these parameters
that retain a Hamiltonian character, albeit with a non-cécel Poisson bracket. Gaus-
sian wave packets parametrized by position, momentum, lexmpdth and phase are a
prominent example. In the classical limit, their variatibequations of motion for posi-
tion and momentum yield the Newtonian equations of clabgicdecular dynamics.
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[1.4.1 Variational Gaussian Wave-Packet Dynamics

We consider a Schrodinger equation in semi-classicairggabr » € R?,

. oY . g?
ZEEZH#J, H=H :—3A—|—V7 (4.1) [11:schrod-eps

with a small positive parameter < 1 (formally in place ofs, see Sect..2.3) and a
potentialV. The typical situation of (4.1) is the time-dependent B@ppenheimer ap-
proximation for the motion of nuclei, wher represents a mass ratio of nuclei and
electrons.

As proposed by Heller (1976), the variational approximat (4.1) can be done by
complex Gaussians of the type

o)~ uont) = exp (2 (3o = al0) OO — ) +500)- (- a0) + <) ).
@2

whereq(t) € R? is the position average andt) € R? is the momentum average of the
wave packet. The matrig(t) € C?*? is a complex symmetric width matrix with positive
definite imaginary part, possibly further restricted to agdinal matrix or just a multiple
of the identity,c(t) 4 with complexc(t). Finally, ¢(¢) € C is a phase and normalization
parameter.

The choice of Gaussians appears attractive because thenexecfunction retains the
form of a multidimensional Gaussian for all times in the cafs quadratic potential, even
for a time-dependent quadratic potential. This useful fattbws from the observation
that Hu then is in the tangent spacewgtand therefore the variational approximation and
the exact wave function coincide. For a narrow wave pacKetjdth ~ <'/2 in (4.2), a
smooth potential appears locally approximately quadratid we may then expect good
approximation by Gaussians, as will be made more precisedh B.4.4 in an argument
based on the error bound (1.11).

The equations of motion for the parameters read as folloveli€H1976, Coalson &
Karplus 1990): with(4) = (u|A|u) denoting the average of an observadien the
Gaussian state of unit L2 norm, we have classically-looking equations for positiod a
momentum, with the average of the gradi&fit of the potential,

¢ = p
p = —(VV).

(43)

For the width matrixC' and the complex phagewe have, with the Hessia¥i?V and with
tr denoting the trace of a matrix,

C = —C*— (V) (4.4)
Eo= PV Swe S (i ((mo) YY), (4.5)
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WhenC is restricted to diagonal matrices, then the diagonal gatt ibe taken on the
right-hand side of the differential equation 16t WhenC = cI is restricted to a multiple
of the identity (spherical Gaussians), then the diffesdrgguation forc is obtained by
taking the trace on both sides of the differential equatmnd. If the width matrix is
taken constant (frozen Gaussians, Heller 1981), then thatieq forC is discarded, and
only the equations for position and momentum and phase remai

The more general situation of a Hamiltonian

N 2

H:—Z;nnAmn-i-V

n=1

with different mass parameters,, collected in the diagonal mass matiik = diag(m,, ),
is readily reduced to (4.1). This is done by transformingadablest = M'/2z and to

G=M"?q, p=M"p, C=MPOMTVE, (=,

which again evolve according to the differential equati@h8)—(4.5).

As ¢ — 0, the Gaussians (4.2) become narrower and increasinglyeotnated ag,
and we haveVV) — VV (q) for a Gaussian of unit? norm. Hence the equations for
positiong and momenturmp become the

classical equations of motion in the lingit— 0.

The differential equations (4.3)—(4.5) are a regular péstion to the equations fer= 0:
lettinge — 0 gives a well-defined limit on the right-hand side. They arelorger a
singularly perturbed system as (4.1) is. In contrast to thegsian wave packet, the time-
dependent parameters are not highly oscillatory functions

We shall give a derivation of the equations of motion (4.8)5]) that highlights their
mathematical structure as a non-canonical Hamiltoniatesygor a Poisson system in
another terminology). We first study the structure of théatamal equations of motion
in coordinates on an approximation manifold in a generairgptind then return to the
particular case of Gaussian wave packets. The preseniatibis section essentially fol-
lows Faou & Lubich (2006).

[1.4.2 Non-Canonical Hamilton Equations in Coordinates

Canonical Poisson Structure of the Schizdinger Equation. We splityy € L?(R?, C)
into the real and imaginary pars= v + iw. The functions andw are thus functions in
thereal Hilbert spacel.?(R¢, R). We denote the complex inner product py-) and the
real inner product by: | -).

As the HamiltoniarH is a real operator, the Schrodinger equation (4.1) can litewr

v
ew

Huw, :
e ()



1.4 Parametrized Wave Functions: Gaussian Wave Packets 49

With the canonical structure matrix

and the Hamiltonian function
H(v,w) = (Y| H|¢) = (v|Hv) + (w | Hw)

for ¢ = v+iw (we use the same symb#l as for the operator), this becomes the canonical
Hamiltonian system

o\ _ 1 ., :
(w) =5 JI'WVH(v,w). 4.7 |I | : gwp- can- ham
We note that the real multiplication withh corresponds to the complex multiplication
with the imaginary unit.
As in Theorem 1.2, the flow of this system preserves the caabaymplectic two-
form

w&n) =2e(EJn) = (&lm)— (& lm),  &nel’RYER)% (4.8) [I1: gwp-synp-2]
The associated Poisson bracket is

1
{F,G}can = %(VF | J7IV@) (4.9) | I'l: gwp- poi - can|

for functionsF, G : H'(R?, R)? — R. We have

d

G F (), w(t)) = {F, H}can(v(t), w(t))

along the solutions of (4.7).

Poisson Structure of Variational Approximations. We consider a finite-dimensional
smooth submanifoloM (of dimensionm) of the complex Hilbert spacg?(R¢, C) with
the property (1.3), i.e., with € 7, M alsoiu € 7, M at everyu € M.

Taking the imaginary part in the Dirac—Frenkel time-depand/ariational principle
(1.2) onM yields, upon identifying: = v + sw with the real pain = (v, w)7T,

(n2eJi—V, H(w) =0 forall jeT,M. (4.10)

We choose (local) coordinates @1 so that we have a smooth parametrization

u=x(y)

of M, for y in an open subset dR™. We denote the derivativ&¢(y) = dx(y) =

V(y)+iW (y) orinthe real setting a& = ( 5/

map y. We denote byX” the adjoint ofX with respect to the real inner produet -).

) , which is of full rank for a coordinate
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Sinceu = X (y)y and the tangent vectors i), M are given ag = X (y)n with arbitrary
n € R, we obtain from (4.10) the differential equation&",

2 X (5)TIX () § = X(0)"VuH (x(y)).- (4.11)

With X ¢ denoting the adjoint o with respect to the complex inner prodyet-), we
noteX;Xc = (VIV +WITW) +i(VIW - WTV) = XTX —iXTJX and hence

XTJX = -Im X¢ Xc. (4.12)
This skew-symmetric matrix is invertible, as the followilegnma shows.
Lemma 4.1. If 7, M is a complex linear space for evenyc M, then
X(y)TJX (y) is invertible for ally.

Proof. We fix u = x(y) € M and omit the argumentin the following. SinceZ, M =
Rangé€ X¢) is complex linear by assumption, there exists a real linegpmgL : R™ —
R™ such that X¢cn = X¢Ln for all n € R™. This implies

JX=XL and L?>=-Id
and henceXTJX = XT X L, which is invertible, sinceX is of full rank. O

We denote the inverse, which is again skew-symmetric, by

1 _
By) = 5 (X@)"IX(w) . (4.13)
Introducing the Hamiltonian function on the manifold in the coordinateg as
K(y) = H(x()); (4.14)

we noteX (y)TV,H(x(y)) = V,K(y) in (4.11). We then have the following result.

I'l:thm poi sson| Theorem 4.2 (Variational Equations of Motion in Coordinates). The differential equa-

tions of the variational approximation in coordinates read

y=By)V,K(y). (4.15)

This is a non-degenerate Poisson system, i.e., the steugtatrix B(y) is invertible and

generates a bracket

{F.G}(y) = VF(y)" B(y)VG(y) (4.16)
on smooth real-valued functiods G, which is antisymmetri¢{G, F'} = —{F, G}) and
satisfies the Jacobi identitf E, { F, G} } + {F,{G, E}} + {G,{E,F}} = 0) and the
Leibnizrule{E - F,G} =E-{F,G} + F - {E,G}).
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Proof. By (4.11) and the definitions oB(y) and K (y), we have (4.15). It remains
to prove the properties of the bracket. Sinceplays no role here, we leB(y) =

(X(y)TJX(y))_l (without the factors-) in this proof. For points, € M we intro-
duce the symplectic projectdi (u) from the Hilbert spacé( = L?(R¢,R)? onto the
tangent spac&, M as

I(u) = X(y)By)X(y)'J,  u=x(y) eM,
From the induced decompositiét = I (u)H & (I — II(u))’H we obtain, by the implicit
function theorem, a corresponding splitting in a neighbood of the manifold\ in H,
Yp=u+v withue M, II(u)v=0.
This permits us to extend functiosto a neighbourhood of1 by setting
F(y)=F(y) for ¢ =u+v withu=x(y), II(u)v=0.

We then have for the derivativ&ﬁ(u) = dﬁ(u)ﬂ(u) and hence for its adjoint, the
gradient,VF(u) = I (u)"VF(u). Moreover,VF (y) = X (y)TVF(u) for u = x(y).
For the canonical bracket this givesuat x(y),

{F, GYean(w) = VF(u)T I (u)J I (u)"VG(u)
= VF(y)" By)VG(y) = {F,G}(y) .

Therefore the stated properties follow from the corresprogndroperties of the canonical
bracket. O

We note that along solutiongt) of (4.15) we have, for real-valued functioAs

d

W) ={F K} (y().

More on Poisson systems can be found in Hairer, Lubich & Wa(2@06), Chap. VII.2,
and Marsden & Ratiu (1999), Chap. 8.5. In particular, the floap¢; : y(0) — y(t) is a
Poisson mapthat is, it preserves the Poisson bracket as

{Fog,, Gody ={F,Gyod, VFEG.

The property of being a Poisson map in the coordinates carabslated to be an equiv-
alent formulation of the symplecticity of the flow on the nfatd M as stated by Theo-
rem1.2.

11.4.3 Poisson Structure of Gaussian Wave-Packet Dynamics

The variational Gaussian wave-packet dynamics (4.3)}-{g .&btained by choosing the
manifold M as consisting of complex Gaussians (4.2). For ease of gatgEnwe give
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the derivation for spherical Gaussians, whé€re- cI; with a complexc = a + i3 with
8 > 0, andl, is thed-dimensional identity. We write the complex phas&as ~ + id.

We then have the approximation manifold

M={u=x(y) € L*RY) :y = (p,q., 8,7,6) € R*" with >0}  (4.17) [Mgup

with

(x(y)) (z) = exp(é ((a+iB)|lz—q +p-(z —q) +7+ z‘é)). (4.18) [chi - gup

The tangent spac&, M C L2?(RY) at a given pointu = x(y) € M is (2d + 4)-

dimensional and is made of the elementd.8fR?) written as

1
€

((A+iB)|x—q|2+(P—2(oz+i6)Q)-(x—q)—p~Q+C+iD)u (4.19)

with arbitrary(P, Q, A, B, C, D)T € R?¢+4, The tangent spacg, M is indeed complex
linear (notes > 0). Moreover, we have, ¢ 7, M, and hence Theorem 1.4 shows the
preservation of the squardd norm ofu = x(y), which is given by

€

N = I = exp (-2 (”f)d”.

20

We then have the following result.

(4.20)

Theorem 4.3 (Gaussian Wave-Packet Dynamics as a Poisson teys). The varia-
tional approximation on the Gaussian wave-packet manifeldbf (4.17)—(4.18) yields

the Poisson system
¥ =B(y)VyK(y)
where, fory = (p, q, o, 3,7, 6) € R24+* with 3 > 0,

0 I, 0 0  —p
I, 0 0 0 0
1 o o o 8 9
B(y) = N 452
Wlo o -2 o 3
pr 0 0 -3 0
d+2
o o0 /g 0 -—%2

defines a Poisson structure, and foe= x(y),
K(y) = (ulH|u) = Kr(y) + Kv(y)

is the total energy, with kinetic and potential parts

(4.21)

(4.22)

(4.23)
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Kr(y) = N(y) (ng%laz;ﬁQ) =<u‘ —%A’@

and
Kvl) = [ Ve (=2

Both K (y) and N (y) are conserved quantities of the system.

(ﬁ|x—q|2+5))dm:<u|V|u>.

Proof. By (4.18), the derivativeXc(y) = dx(y) = (2%, 3%, v, u du du) for ¢ =
x(y) is written

X(C(y): (I_Q7 —2(0[+’Lﬁ)($—q)—p, |CC—q|2,’L|CC—q|2, 171)’“

oM | .

Calculating the Gaussian integrals, we obtain from (4.4a) t

0 Iy 0 0 0 0
d 2
~I; 0 0 C% | 0o 2
0 0 0 _edld+2) o _d
857 28
QEXT(Q)JX(Q) = N(y) 0 dp”  ed(d+2) 0 d 0
T2 T 8B 23
0 0 0 -5 0 -2
2p” d 2
0 - g 0

The inverse of this matrix can be computed explicitly to give above matriB(y). The-
orem 4.2 then yields the Poisson system, and Theorems 1 1.4nd/e the conservation
of energy and norm. O

[1.4.4 Approximation Error

From the error bound (1.11) we derive the following resuhjah is closely related to a
result by Hagedorn (1980) on non-variational Gaussian waakets.

Theorem 4.4 (Error Bound for Variational Gaussian Wave Paclets). Consider the
variational multidimensional Gaussian wave packet appration (4.3)—(4.5). Assume
that the smallest eigenvalue of the width matrixC(t) is bounded from below by a
constantp > 0. Assume that the potenti# is three-times continuously differentiable
with a bounded third derivative. Then, the error betweenGagissian wave packe(t)
and the exact wave functiaf(t) with Gaussian initial datay(0) = u(0) is bounded in
the L2 norm by

lu(t) = ()] < cte'/?,
wherec depends only op and the bound o3V,
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Proof. In view of the error bound of Theorem 1.5, we estimate theadist of-L Hu(t)
to the tangent spacg, ;) M. We split the potential into the quadratic Taylor polynomia
Uq(v) atthe current position(t) and the non-quadratic remaindéf, ),

V=Uau) + W »

where we notéW, (z)| < 3; Bs |z — ¢|* with a boundB; of 9*V. Since bothAu and

U,u are in the tangent spadg M given by (4.19), we have
With the above bound folV, and the condition on the width matrix we obtain, for a
Gaussian state of unit L? norm,

dist (%Hu,%/\/l) = dist (%un,%/\/l) < Héun

1/2
[Wyull < e (/ / e=2rla=al®/e g _ [0 da:> < e,
Rd

and hence the result follows with Theorem 1.5. O

As is clear from the proof, the global boundednes3f can be weakened to a bound
in a neighbourhood of the positiopé) and exponential growth outside this region.

We remark that an analogous result does not hold for Gaussisa packets where
the width matrix is restricted to a diagonal matrix.

Though the above result is asymptotically comforting, itsinibe noted that for re-
alistic values of: ~ 1072, a result with a predicted error ef/? cannot necessarily be
considered accurate. We will turn to more accurate senssidal methods briefly in the
next section and in more detail in Chapter V.

[1.5 Mixed Models, Quantum-Classical Models

There are numerous possibilities for extensions and caatibims of the models described
in the foregoing sections. For example, within an MCTDH feavork, for some parts of
the system the single-particle functions might be choseBaassians, while they are left
of a general form for other particles (Burghardt, Meyer & €dzhum, 1999). Consid-
ering the Gaussians of frozen width in such a model and pagsithe classical limit
¢ — 0 in the equations of motions for positions and momenta thellgiequations of
motion where most particles are described classicallyevkilme are treated quantum-
mechanically. For example, this is desired for studyinggmadransfer in a critical region
of a molecule, or more generally for describing a quantunsgsiiem in a classical bath.

[1.5.1 Mean-Field Quantum-Classical Model

Among the various possible mixed quantum-classical moaedsnow describe the con-
ceptually simplest one which has found widespread use inpotetions, in spite of



1.5 Mixed Models, Quantum-Classical Models 55

its known flaws. Consider a system of light and heavy pasi¢teg., protons and the
other, heavier nuclei in a molecule), where one would likdescribe the light particles
quantum-mechanically and the heavy particles classidaty: andy denote the position
coordinates of heavy and light particles, respectively.desider the Schrodinger equa-
tion with the HamiltonianH = —%Az — 34y, + V(z,y), wheres? is the mass ratio as
in Section 11.2.3. We start from a time-dependent Hartrggagdmation to the full wave

function?(x, y, t)
¥ (z,y,t) = (1) P(y,1),

where we restrict/(x, t) further to take the form of a frozen Gaussian at variabletjuosi
q(t) and with variable momentum(¢). When we write down the equations of motion
for the corresponding variational approximation and letwidth of the Gaussians tend
to zero, so that averages overare replaced by evaluations at the positigh), then
we obtain the following coupled system of classical and quanequations where the
classical particles are driven by the mean-field potenti#il@quantum particles, the wave
function of which is determined by a Schrodinger equatidth & potential evaluated at
the current classical position:

qg=p
P = V| V(g-)|¥) (5.1)
)
iga—f - —%A¢+V(q,.)¢.

While this appears as an attractive model at first sight, @amrdfield character is flawed.
The problem becomes clear by the following argument: Suppasstart with an initial
wave function

U(w,y,0) = 17} (2)P1 (2, y) + 0273 (2)P2(2, 1),

whered; (z, -) are eigenfunctions ofl.(z) = —1 A + V (z, ) to well-separated eigen-
valuesE; (z), of unit L2 norm, anch! are complex Gaussians of width /2 and unit
L2 norm. The coefficients should satisfy, |* + |a2|> = 1 so that? is of unit L2 ,
norm. Using first Theorem 2.1 and then Theorem 4.4 showsahéiniest ~ 1 the exact
wave function?; (z, y, t) with initial datay?(:c)q')j (x,y) is approximately, up to an error
of ordere!/2,

Wj(il?, Y, t) ~ ’Yj(xa t)q)j (Ia y) )

wherey;(z, t) is a Gaussian located at a positipfft) that follows classical equations of
motion

4 =pj: Pi=—VeEj(g)- (5.2)
The total wave functiol = «1¥; + as¥; is thus approximately equal to

VU(x,y,t) = a1y (2, t)P1(2,y) + agva(z, t)Pa(, y) .
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On the other hand, in (5.1) the time-adiabatic theorem roaet after Theorem 2.1 and
applied with the time-dependent Hamiltoniah (t) = —3 A + V (¢(t), -), yields that for
timest ~ 1,

¥(y,t) = B1(t) D1(q(t),y) + B2(1) P2(q(t),y)
with coefficients satisfying3;(¢)| = |«;|, so that

(¥ | He(q) | ¥) = |aa [P E1(q) + |azl* Ea(q)

and hence the classical motion in (5.1) is approximatelgrieined by

i=p, b=-V(j0aPEr(g) + asPEa(g) 5.3)

with a potential that is a convex linear combination of theeptials in (5.2). Unless
the potentialsE’; happen to be quadratic, not even the average positign + a2qs is
described correctly by the equations §oiThe equations (5.1) are asymptotically correct,
however, if we start from a pure eigenstate (where= 1, as = 0).

This example illustrates that even very plausible-lookimedels must be considered
with care and assessed critically by analysis and (numenichphysical) experiments.

For an asymptotic analysis of the above mixed quantum-icklssodel we refer to
Bornemann & Schiitte (1999). The quantum-mechanical martbe further restricted,
assuming for examplé(y, t) in the form of a Slater determinant, thus combining classica
motion and the time-dependent Hartree-Fock method. Glekiatence of solutions for
such a model has been studied by Cances & Le Bris (1999).

[1.5.2 Quantum Dressed Classical Mechanics

Even if the approximation by a Gaussian wave packet is togtrpit can nevertheless
be reused in a correction scheme, which is once more basée dimie-dependent varia-
tional principle. We briefly describe such an approach dugiltimg (2003). Letq(t), p(t)

be defined by Gaussian wave packet dynamics with a diagod#h wiatrix with entries
cn(t), possibly further simplified by using the classical equagiof motion forg andp
and a similar simplification in the differential equations the widths, replacing averages
by point evaluations. We search for an approximation to taeesfunction of the form

Y(ar,. o ) =Y ag )6 (@ t) - o (a1,
J

where the sum is over a set of multi-indicés= (ji,...,jn) and the functionsﬁlg.")
are shifted and scaled Gauss-Hermite basis functions ddiynéwve assume alt,, one-
dimensional for simplicity)

o () = xp( (en®) (@n = aa(0)? + pu(t) (wn - qn<t>>)) :

(222 o, )

3
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with Hermite polynomialsH; and the known Gaussian parametes$t), p,(t), and
cn(t). The unknown coefficients; (¢) are determined by differential equations obtained
from the variational principle on thiime-dependerdapproximation manifold (here actu-
ally a linear space)

My ={u:u(zy,...,zN) :ZanS;i)(xl,t)-...-qﬁg-g)(x]v,t), a; € C},
J

at every instant as previously in (1.2), except that nafu/dt is not sought for in the
tangent space of1,, but as the derivative of a patl{t) € M,.

This approach leads to a method which adapts the locationnédtth of the Her-
mite basis functions to Gaussian wave packets that follassital trajectories. We will
consider in more detail a somewhat related, but computaltipfavourable approach in
Chap. V.

[1.5.3 Swarms of Gaussians
In a conceptually similar approach, frozen Gaussiaris, ¢) first evolve independently
according to the classical equations of motion for posiiod momentum and with the

phase given by the action integrjﬁ@fi(%|pk|2 — (V)),,)ds, as proposed by Heller (1981).
This approximation is then improved upon by taking a lineanbination

Y, t) ~ Y ar(t) w(z,t),
k
where the coefficients (¢) are determined by the time-dependent variational priecipl
<Z bj;
J

This yields a linear system of differential equationsdct (ay),

) . 1
%(ak%—i—ak%)—EH;ak%>:O Vb:(bj).

Ma = i Ka— La
(23
with the matricesM = ((v; [)), L = ((v;j %)), K = ({(v; | H|)). While the
L? norm of the approximation is conserved, the total energysymaplecticity arenot
conserved by applying the variational principle on a tinepehdent approximation space
as is done here, in contrast to the case of a time-indepeagpnximation manifold as
studied in Sect. 11.1.3.

The above approach was mentioned by Heller (1981) and hasdasged further
by Ben-Nun & Martinez (1998, 2000) together with criteriaawhto create, or “spawn”
new basis functions. It is related in spirit to particle noeth in fluid dynamics; see, e.g.,
Monaghan (1992) and Yserentant (1997).
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11.6 Quasi-Optimality of Variational Approximations

sect: quasi - opt |

In this theoretical section we consider variational appr@tion on a manifoldM and
study the following question: In case the true wave funct@nains close to the manifold,
does the time-dependent variational principle then pmegidood approximation? Stated
differently: Can the error of the variational approximatioe bounded in terms of the
error of the best approximation to the wave function/ot?

This is a familiar question in other areas of numerical asialycf. Céa’s lemma on
the optimality of Galerkin approximations of elliptic badery value problems as stated,
e.g., in Ciarlet (1991), p. 113. A positive answer to thissfios separates the problems
of approximability of the wave function on the chosen maldifevhich often is a model-
ing hypothesis, and the quality of the time-dependent tiarial principle for obtaining
approximate wave functions.

Following Lubich (2005), we give a conditionally positivesaver under assumptions
that include, for example, the time-dependent Hartree atefimd its multi-configuration
versions.

Assumptions.We consider the Schrodinger equation (1.1) on a Hilberts@ with
h = 1 in the following, and the variational approximation givey the Dirac-Frenkel
principle (1.2) on the manifold. The HamiltonianH is split as

H=A+B (6.1)

with self-adjoint linear operatord andB whereA is such thai. € M impliese "4
M for all t. This is satisfied if and only ifi is tangential, that is,

Aue T,M  forall uwe MnD(A). (6.2)

We assume that the (non-tangential) operatas bounded:

1Bell < Bl (6.3)

for all ¢ € H. About the approximation manifold1 we assume the condition (1.3) of
complex linear tangent spacg&sM, and a condition that is satisfied A contains rays
(cf. Theorem 1.4):

we T, M  foral uweM, (6.4)

A bound of the curvature of is formulated in terms of the orthogonal projectét@:) :
H — T, MandPt(u) = I — P(u):

[ (P(u) = P))pll < rmllu—ol el (6.5)
IPH@)u—v) | < &lu—v]? (6.6)
for all u,v € M andy € H. We assume tha®(u(t))e is a continuously differentiable

function oft in H for every continuously differentiable patfit) on M andy € H. These
assumptions will actually be needed only in a neighbourtaddkde wave function or the
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variational approximation, so that only a local bound ofthevature rather than a global
bound enters the estimates.

The initial datay(0) is assumed to be aM and of unit norm. We consider a time
interval on which the solutiogh(¢) to (1.1) remains neak1, in the sense that

1

dist(+(t), M) < P for 0<t<T. (6.7)

Both the exact wave functiorh(t) and the variational approximatiant) of (1.2) are
required to be in the domain @f for 0 < ¢ < ¢, with a bound

[HYp@) <p,  [Hu®)|| <p and [JAu(t)]| < p. (6.8)
Further we consider the distance bound 1 given by
dist (H1(t), T,y M) <8, dist (Hu(t), T,(yM) <6, (6.9)

wherev(t) € M is the nearest point tg(¢) on M:
[o(t) = (D) = dist ((2), M) .

Discussion of the Assumptionsln all the examples of this chaptet, might be chosen
as the kinetic energy operatl, though this might not always be the optimal choice.
A more critical assumption is the boundedness of the opefatihnat maps outside the
tangent space. It is a reasonable assumption in the Sdg&déequation of the nuclei
and its Hartree and Gaussian wave packet approximatiodsifair multi-configuration
versions). The condition is not satisfied, however, in thgetdependent Hartree-Fock
method for the electronic Schrédinger equation where tbel@nb potentials are un-
bounded. We refer to Lubich (2005) for a corresponding tesuihe Coulomb case.

We have assumed the splitting (6.1) independent of time &se eof presentation,
though the result would extend directly to the situation tifree-dependent splittingl =
A(t) + B(t). For example, in the (multi-configuration) Hartree methaamight choose
A(t) = T+ Wi + ... + Vy with the mean-field potentialg],, so thatB(t) becomes
the difference between the given potential and the sum afniis@n-field potentials. This
can be expected to give more favourable error bounds thaneaitidependent splitting
into kinetic energy and potential. For Gaussian wave packet can split inteA(t) =
T + Uy with the local quadratic approximatidii, ;) to the potential at the position
q(t), and the non-quadratic remaind@(t), as we did in the proof of Theorem 4.4.

Condition (6.4) is satisfied for all the examples in this deapConditions (6.5) and
(6.6) encode curvature information #f in a form that is suitable for our analysis. Con-
dition (6.7) ensures that(t) has a unique nearest point . The regularity assumption
(6.8) for¢(t) is satisfied if the initial value has such regularity. Theulegty (6.8) of
the approximate solution(t) needs to be ascertained, but is known to hold, e.g., for the
(multi-configuration) time-dependent Hartree method withenSchrodinger equation for
the nuclei has a smooth bounded potential.

The following result bounds the error of the variational mgpgimation in terms of the
best-approximation error.
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|-t hm near - opt | Theorem 6.1 (Quasi-Optimality of Variational Approximati ons). Under conditions

(6.1)—(6.9), the error of the variational approximationdeunded by

t
w(t) — ()| < d(t +Ce'¥t/ds ds with d(t) = dist(y(t), M (6.10) |err-opt
lu(t) - $(1)]| < dt) ) (t) = dist(is(t), M)
and withy = 2kd andC = 3 + 3kp, for0 < ¢ <t.

Though the bound (6.10) can be pessimistic in a concretatiity it does identify sources
that can make the variational approximation deviate famfoptimality even if the best-
approximation errori(t) is small: large curvature of the approximation manifalg, @
large effective non-separable potential in the Hamiltor{ja ¢), lack of regularity in the
exact or approximate solutiop (d), and long time intervalst).

Proof. The proof compares the differential equation €dt) with the equation satisfied
by the best approximation(t) € M with ||v(t) — ¥ (¢)| = d(¢).
(a) The functiorv(t) is implicitly characterized by the condition (omitting thbvious

argument in the following)
P(w)(v—1)=0. (6.11)

Under condition (6.7), the implicit function theorem carnused to show that this equation
has a unique solution in the ball of radiug(2«) aroundy, which depends continuously
differentiable ort. We derive a differential equation fott) by differentiating (6.11) with
respectta ("= d/dt):

0=P)(o—9)+ (P'(v) (v—19))o (6.12)

with (P’ (v) - ¢)v = (d/dt)P(v(t))e for ¢ € H. Sincev € T, M, we haveP(v)y = 0,
and the equation becomes

(1+P@)- (v =)0 = P)i. (6.13)
By (6.5) and (6.7) we have
1
[1P'(w) - (v =) <k llv=9] <3,
so that the operator in (6.13) is invertible and

0= P)p+r(v,9)  with  [[r(v,9)] < 26pllv — ] (6.14)

Here we have used the bound (6.8);|| = ||Hv| < p. Inserting (1.1) in (6.14), the
equation can be written as

b= P(v)%HU — P H@W = ) + (0, ). (6.15)

7

We will compare this differential equation with Equation1Lfor u(t), viz.,
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u-P(u)Z_Hu. (6.16)
In (6.15) and in the following we tacitly assumét) € D(H) = D(A). (If v does not
have this regularity, then the proof would proceed by raeptae by a regularized family
(ve) with v-(t) € M N D(H) andv. — v in C1([0,%],’H) ase — 0. Applying the
arguments below to. and lettings — 0 in the final estimate then gives the result.)
(b) We form the difference of (6.16) and (6.15), take the irpreduct withu — v and
consider the real part. We then have

d 1d 9 .
Hu—vHa”u—vﬂ—gaﬂu—vﬂ =Re(lu—v|u—-0)y=I+1I+1II
with
I = —Re{u—v|P(u)iHu— P(v)iHv)
II = —Re(u—v|PW)iH(v—1))
111 = —Re{u—v|r(v,¥)).

(c) Using the self-adjointness df = A + B and condition (6.2), which implies
PL(v)iAv = 0, we write

I = Re(u—v|Pt(u)iHu— P(v)iHv)
Re(u — v | P (u)iHu) — Re{u — v | P+ (v)iBv).

To treat the expressiofY, we split
IT=—-Re{u—v|P)iA(v—1)) — Re{u —v|P(v)iB(v—1)).

It is in the first term that condition (6.4) is used. This cdiwdi implies P(v)v = v and
hence, by (6.11),

v=P)y, v—1=Pv)(v-1)=-P ().
It follows that
(v| P(0)iA(v — ) = —(v| P(0)iAP*(v)1) = (P (v)iAv ).

SinceP+(v)iAv = 0 by (6.2), we obtain

(]| P(v)iA(v — 1)) = 0. (6.17)
Similarly, (6.2) implies
{u iAP*(u)(v = )) = 0. (6.18)

Now, (6.17) yields
(u—v | P)iA(v =) = (u]iA(v = ¥)) = (u—v| PH(0)iA(v — 1)) .
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With (6.18) and once agaiR~ (v)iAv = 0, we obtain

(u—v|P()iA(v =)

= —(u]iA(P*(u) = P~ (v))(v = ) + (u — v| P*(v)iAy) .

Using that4 and P+ (v) = P+(v)? are self-adjoint and that = H — B by (6.1), this is

rewritten as

(u—v|P(v)iAd(v = 1))

—(idu | (P(u) = P(v))(v =) + (P* (v)(u = v) | P~ (v)iH )

—(u—v|Pt()iBy).
We then arrive at the basic equation of the proof,
I+1I = Re(P(u)(u—wv)|P*(u)iHu)
—Re(u—v|iB(v—1))
+ Re(idu | (P(u) = P(v))(v — ¢))
— Re(P*(v)(u —v) | P*(v)iHY) .
With (6.3)—(6.9) we thus obtain
T+11] < wlu=ol* -6+ u—vl-Bllv—v|
+ e kllu—ol o=y +rlu—v]?-8
26 lu— vl + (B + wp) lu = o - v =]

(d) Together with (6.14) for bounding/ I, this estimate gives
d
7 lu = vl < 7llu = vl + Cllv -9

with v = 2k andC' = 8 + 3ku. The Gronwall inequality then implies

lu(t) - v(t) |\<Oe“/ lo(s) — ()l ds

and the triangle inequality far — ¢ = (u — v) + (v — ) together withd =

yield the result.

(6.19)
lo =%l
O



Chapter III.
Numerical Methods for the Time-Dependent
Schrodinger Equation

chap: num t dse |

This chapter deals with numerical methods for linear tirrpahdent Schrodinger equa-
tions, of low to moderate dimension (less than 10, say).Algh the emphasis is on
time-dependent aspects, we begin with a section on spaceetilzsition, where we de-
scribe the Galerkin and collocation approaches on the itapbexamples of Hermite and
Fourier bases, including their extension to higher dimamsiusing hyperbolic cross ap-
proximations and sparse grids for which the computatiomakwgrows only mildly with
the dimension.

We then turn to time-stepping methods: polynomial appraiomns to the exponential
of the Hamiltonian based on the Lanczos method or on Cheliysblgnomials, and
splitting methods and their high-order refinements by cositipm and processing. We
conclude the chapter with a brief look at integrators forr8dinger equations with a
time-varying potential.

The time-dependent Schrodinger equation considereddichiapter is inl > 1 space
dimensions, has = 1 and reads

oY

Z§=H¢7 H=T+V, (0.1) |III:schrod-eq

with the kinetic energy operatdr = —ﬁA for a positive mass parameterand with a
potentialV ().

[11.1 Space Discretization by Spectral Methods

. sect : spectral |

We follow two tracks (among many possible) for the discidion of the Schrodinger

equation in space: the Galerkin method with a basis of Herfaitctions and collocation

with trigopnometric polynomials. Both cases are instandespectral or pseudospectral
methods, which are of common use in many application aress;esg., Canuto, Hus-

saini, Quarteroni & Zang (2006), Fornberg (1996), Gottielrszag (1977), and Tre-

fethen (2000). Both cases are studied here for the Sctgédéguation in one and several
dimensions, with the extension to higher dimensions by Hygeally reduced tensor

product bases.
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I11.1.1 Galerkin Method, 1D Hermite Basis

Galerkin Method. We consider an approximation spagg C L2?(R%) spanned by
basis functiongy, . . ., ¢ k1. We determine an approximate wave function(t) € Vi
by the condition that at every instantits time derivative is determined by the condition

0 im0 vpeve Q)

— €V such that < ‘ i
dt K Pl
This is, of course, the time-dependent variational prilec{fl.1.2) on the linear approxi-
mation spac&’x . In particular, we know from Sect. II.1 that norm, energy apthplectic
structure are preserved. Writing the approximation asealicombination of basis func-
tions

K—1
Vi (t) = Z ek (t) o (1.2)
k=0

and inserting in (1.1), we obtain for the time-dependenffenent vectorc = (cx) the
linear system of ordinary differential equations

iMgé= Hge (1.3) [I11:gal-coeff |

with the matrices
K-1 K-1 :
Mg = (<‘pﬂ'|9"k>)j,k:0’ Hy = (<<pj|H|(pk>)j7k:0. (1.4) |I I :gal-matrlx|

The matrix M becomes the identity matrix in the case of an orthonormasbesere
(@i lpr) = djk-

Hermite Basis in 1D.After a suitable rescaling and shift— «x + 3, this is the choice
of basis functions

1 1 2
_ —xz/2 R : _
vr(z) = ey o] Hi(z)e . (1.5) [111:hernite-formla

Here, Hy(z) is the Hermite polynomial of degrée which is thekth orthogonal poly-
nomial with respect to the weight functierr®” on R; see, e.g., Abramowitz & Stegun
(1965). While formula (1.5) does not fail to impress, it isther useful for computations
nor for understanding the approximation properties of tisisis. We therefore now turn
to another way of writing the Hermite functiopg, which also provides some motivation
for the use of this basis.

Ladder Operators. We recall the canonical commutator relation (1.4.8) betwie one-
dimensional position operatgrgiven by(qv))(z) = z(x) and the momentum operator
p=—id/dx:

1

It follows that Dirac’sladder operatorsiefined by

1

. (a—in) 8)

sl
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satisfy the relations

tg— 12 2y _ 1 t_ 1/ 9 2 1 -
AA—2(p +4q°) 5 AA—2(p +q)+2, a.7)

so thatAT A and AAT have the same eigenfunctions as the Hamiltonian of the h@iomo
oscillator, (p? + ¢*). We also note

AAT = ATA+1. (1.8) [111:AdA-commute]

Moreover,A' is adjoint toA on the Schwartz spac® of smooth rapidly decaying func-

tions:
(Alo|v) = (p|Av) Vo, b €S, (1.9)

Harmonic Oscillator Eigenfunctions via the Dirac Ladder. We note that the Gaussian
do(x) = e~7"/2 is in the kernel of4: Ago = 0. Moreover, it is checked that multiples of
$o are the onlyL? functions in the kernel oft, whereas4 has only the trivial kerne.
With (1.8) it follows that

AA ¢y = AT Ago + ¢o = ¢0

and hencey, is an eigenfunction oflA' to the eigenvalué. Applying the operatori®
to both sides of this equation, we see that= A'¢, is an eigenfunction ofdtA to
the eigenvalud, and again by (1.8) an eigenfunction 4fA' to the eigenvalu@. We
continue in this way to construct successively.; = Af¢, for k > 0. We thus obtain
eigenfunctionsy;, to AT A, with eigenvaluek, and toA AT, with eigenvalue: + 1. These
eigenfunctions are not yet normalized. To achieve this, ate that by (1.9),

AT gr]|* = (ATgr | ATr) = (o1 | AATGr) = (k + 1) [|gnl|> -
We therefore obtain eigenfunctionstod’ and AT A of unit L? norm by setting

1 - -
wo(z) = pyrds /2 (1.10) [I11:phio
1 T . .
@kH:\/k_HAcpk for £>0. (2.12) |Ill:raising

SinceApy 1 = ﬁ AAt o = VE + 1 ¢, we also have (replacing+ 1 by k)

1
a=—A for £>0. 1.12) [I11:lowerin
o1 = = A (1.12) g

These relations explain the namegaising operatorandlowering operatorfor AT and
A, respectively, and dadder operatordor both of them. Multiplying (1.11) by/k + 1
and (1.12) by/k, summing the resulting formulas and using the definitiond ahd Af,
we obtain the three-term recurrence relation

VE+1opii(z) =V2xpp(z) —Vker1(z) for k>0, (1.13) [l1l:hernite-rec

with ¢_1(z) = 0. This allows us to evaluate,(x) at any required point. We state
essential properties of these functions.

and
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Fig. 1.1.Hermite functionspy, for k = 0, 4, 16, 64.

'l -t hm her ni te| Theorem 1.1 (Hermite Functions).The functionsp, defined by (1.10) and (1.11) form

a completel.?-orthonormal set of functions, the eigenfunctions of thertemic oscillator
Hamiltonian%(p2 + ¢?). They are identical to the Hermite functions given by (1.5).

Proof. From the above construction it is clear that eaghs an oscillator eigenfunction
to the eigenvalué + % As normalized eigenfunctions of a self-adjoint operatto,p;,
are orthonormal. It is also clear from the recurrence refathatyy, is a polynomial of
degreek timese—="/2, By the orthonormality, this polynomial must be a multipfetioe
kth Hermite polynomial, which yields (1.5). For the proof afnepleteness we refer to
Thaller (2000), Sect. 7.8. O

The completeness together with orthonormality yields évaty functionf € L?(R)
can be expanded as the series

f:i<‘ﬁk|f>90ka (1.14) [I11:hermite-series

k=0
where the convergence of the series is understood as cemez@f the partial sums in
the L2 norm.



I1l.1 Space Discretization by Spectral Methods 67

Approximation Properties. We denote byPx the orthogonal projector ontvx =
Spar(9007 IR QOKfl), given by

Pif =" {or|f)en-

k<K

This is the best approximation tf in Vi with respect to thel? norm. We have the

following approximation result, for which we recall = %(m +d/dx).

hermit e-approx| Theorem 1.2 (Approximation by Hermite Functions). For every integes < K and

every functionf in the Schwartz spac§,

1
I =Pl = =D

[A*fI -

Given sufficient smoothness and decay of the function, tipeceqimation error thus de-
cays ag)(K —*/?) for growing K and any fixeds.

Proof. Using subsequently (1.14), (1.11) and (1.9) we obtain

f=Pxf = > {orlf) e

E>K
_ 1 .
- z§<\//€(k—1)...(/€—s+1)<m)90k*5|f><pk
- Z - (prp—s | A°f) vk .

kZK\/k(k—l)...(k—s+1)

By orthonormality, this yields

1 2
_ 2 < | AS
If = Prfl? < K(K_l)._.(K_SH);\WAM
_ 1 s 2
O K(K-1)...(K—s+1) 141
which is the desired result. O

Since the set of linear combinations of shifted Gaussiark@vn to be den2se in
L?*(R) (e.g., Thaller, 2000, p. 40), it is instructive to see thécmcof A5 one~(*=*)7/2,
A short calculation yieldst e~ (@=2)*/2 = \/Li ae~(@=a°/2 and hence

AS ef(mfa)z/Q — 275/2 a® ef(zfa)z/Q )
No surprise, the approximation of (@=0)*/2 by Hermite functionsp;, centered ad is

slow to converge for large shifta| >> 1. According to Theorem 1.2, the error becomes
small fromK > $a? onwards (on choosing= K and using Stirling’s formula fok!).
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Error of the Galerkin Method with Hermite Basis in 1D. We are now in the position to
prove the following error bound. For a related result wertfé-aou & Gradinaru (2007).

rmite-gal erkin| Theorem 1.3 (Galerkin Error). Consider the Galerkin method with the one-dimen-
sional Hermite basi$yy, . . ., ¢x—1), applied to a 1D Sclirdinger equation (0.1) with a
potential V(x) = (1 + 2?)B(x) with boundedB, with initial value (0) = Pk1(0).
Then, if the exact solution is iR (A*+2) for some integes < K/2, the error is bounded
by

Iae(t) = 6(t)| < C K2 (1+1) max, |A25()]

whereC is independent ok andt, is bounded by < ¢2%/2 in dependence of, and
depends linearly on the bound Bf

Proof. (a) We write the Galerkin equation (1.1) as
itk = P HPribr

with the Hermitian matrixPx H P, and the Schrodinger equation (0.1), acted oPRy
as
iPgtp = Px HPy Pgtp + P HPRE,

where Pz = I — Pk is the complementary orthogonal projection. Subtractiregttvo
equations and taking the inner product with — Pk yields, by the same argument as
in the proof of Theorem 11.1.5,

19 (t) = Preyp(t)]| < [1¢x(0) = Preyp(0)]| +/0 |1 Prc H P (7) | dr .

We show in part (b) of the proof that

| Pl PR < C K52 452y (1.15)

The result then follows together with Theorem 1.2, appliethw + 2 instead ofs, to
estimatey (t) — Px(t).
(b) It remains to prove (1.15). We recall thelt = .p” + B(1 + ¢°). By (1.6) we
have
P=—f(A-A, @=L (A+ Al

With (1.11) and (1.12) this gives

Pon = —3(VEE=Dgis — 2k +Dor+ VT 2+ D prsa)
Pon = H(VEE—Dgra+ 2+ Doy + v+ 2+ 1) orra).

This yields, withe, = (o | ¥),

Pgp*Pitp = e VK (K — 1) o —2 + e/ (K + DK pxc_1 .
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Estimating the coefficients, as in the proof of Theorem 1.2 with+ 2 instead ofs, we
obtain
|Pxp*Pgp]| < C K2 A2y
Similarly, we get
lg* Pl < C K2 | A2y

Together with the boundednessBf these two estimates imply the bound (1.15). O

We remark that from Theorem I1.1.5, we can alternativelyagbtin a posteriori error
boundC' K ~%/2t maxo<,<¢ (|| A*T2¢k (7)[|+ ] A*+? Bk (7)]|), where the approximate
solutiony g instead of the exact solutiah appears in the estimate.

Computation of the Matrix Elements. To compute the entries of the matiiik, of (1.4),
we split into the harmonic oscillator and the remaining ptsd,

1 1
H:D+WE—(p2+q2)+(V——q2).
21 21

and consider the corresponding matrices
K-1 K-1
Dk = ((¢j | Dl¢r);hmor Wi = ({0 |Wler), —o-

By Theorem 1.1 Dy is diagonal with entriegl, = (k + %)/M- To computelWy, we
useGauss—Hermite quadraturthat is, Gaussian quadrature for the weight functiot’
overR (see, e.g., Gautschi 1997): fof > K, letx; (: = 1,..., M) be the zeros of the
Mth Hermite polynomialH ,;(x). With the corresponding weights; or w; = w; e,
the quadrature formula

%) g M Jo%) M
/ e " h(zx)dr ~ Zwi h(x;) or / flx)de =~ Zwi f(z)
i=1 > i=1

— 00

is exact for all polynomialé of degree up t@M — 1. If f(z) = g(z) - e="/2 with a
functiong € L*(R) for which the coefficients, = (¢ | g) in the Hermite expansion
(1.14) of g satisfy|cx| < C (1+k)~" with» > 1, we then obtain that the quadrature error
is bounded byO(M ).

We thus approximate

M
(@i | W | pr) ~ Zwi (i) W) or(xi) (2.26) |I11:quad
i=1

using M evaluations of the potential for al> matrix elements, and evaluating (z;)
via the recurrence relation (1.13). To obtain all matrixedats with good accuracy, one
would have to choos@/ distinctly larger thank, but in practice a popular choice is
M = K. Though the lower right block in the matrix is then inaccerahis does not
impair the asymptotic accuracy of the overall numericalhudtfor largeK, since the
inaccurate matrix elements only meet with the small coeffits that correspond to high-
order Hermite functions. This observation can be turnealliigorous estimates with the
arguments of the above proofs.
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[11.1.2 Higher Dimensions: Hyperbolic Cross and Sparse Gris

Ibsec: hermte-d |

We now turn to the Galerkin method with a tensor-product Herrbasis for thed-
dimensional Schrodinger equation (0.1).

Full Tensor-Product Basis. The theory of the preceding section immediately extends to
a full tensor-product basis of Hermite functions: for allltrindicesk = (k1, ..., kq)
with integer9) < k,, < K, take the product functions

Olheryoka) (1505 2a) = Ohy (T1) - - 1y (Ta)

or briefly

Pk = Pk @+ Q P, (2.17) |III:phi-tensor

as the basis functions in the Galerkin method. While thi©iéotetically satisfactory, it
is computationally infeasible in higher dimensions: thentwer of basis functions, the
number of coefficients, the computational work all grow lik¢, exponentially with the

dimensiond to the large bas& .

kz k2

k1 k1

Fig. 1.2.Full and hyperbolically reduced tensor badis £ 32). I11:fig:hyp

Hyperbolic Reduced Tensor-Product Basisinstead of takingll tensor products with
k; < K, we only take a subset of multi-indices: for a bouiidlet the hyperbolic multi-
index setk be given as

d
K=K(dK)={(k,....ka) : kn >0, [J( +kn) <K} (1.18)
n=1

This is illustrated ford = 2 and K = 32 in Fig. 1.2. Taking only the tensor products
of (1.17) withk € K as the basis functions in the Galerkin method greatly resitiosir
number:
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Lemma 1.4. The numbeiV (d, K) of multi-indices inkC(d, K ) is bounded by

N(d,K) < K (log K)*'. (1.19)

Proof. We clearly haveV (1, K) = K. We then note

K K K K
< — — — .. — <
N(2,K) < Tty Tt < KlogK ,
where the terms in the sum correspondio= 0,1, ..., K — 1, respectively. In general,

we have
N(d,K)< Nd-1,K)+ Nd-1,K/2)+---+ Nd—-1,K/K),
which by induction leads to the stated bound. O

Computations with the Galerkin method on the reduced tepsmuct approximation
space

Vi = span{yy : k € K} (1.20) |111:hyp-space

thus appear to become feasible up to fairly large dimengion

Approximation Properties. Can we still get decent approximations on this reduced
space? As we show next, this is possible under more strimggutarity assumptions
on the functions to be approximated. We denoté’ythe orthogonal projector onddc,

given by
Pef= Z<<ﬁk|f><ﬁk-
kel
We let 4,, = \/%(:vn + d/dx,) and for a multi-indexsc = (o4,...,04), we denote

A7 = AT ... A7, We then have the following approximation result.

rmite-approx-d| Theorem1.5 (Approximation by the Reduced Tensor Hermite Bais).For every fixed
integers and every functiorf in the Schwartz spacg(R?),

If = Pefll < Cls,d) K=/ nax, 1A% £,

where the maximum is taken overall= (o4, ..., 04) With0 < o,, < s for eachn.

Proof. For every multi-indext = (k1,...,kqs) we define the multi-index (k) by the
conditionk,, — o(k), = (k, — s)+ (with a; = max{a,0})foralln =1,...,d, and note
that0 < o(k),, < s. Similar to the proof of Theorem 1.2 we have

F=Pef = D (el f)en

k¢K
= Z Ak, s <(AT)U(k)(Pk7cr(k) | f) e
k¢K

Z Ak s <90k—s | Aa(k)f> Pk

ke K
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where the coefficients; s come about by (1.11) and are given as

d
1
S U Sy ey s e e

n

They satisfy, fork ¢ K,

d
jaol? < 42D (1.2

because by the definition (1.18) kfwe have the bound, fdr ¢ K andwithr = 1,... s,

d d
L+ (kn — 7))t —d
1;[1+k—7° > K EWZK(T‘FU

By orthonormality, (1.21) yields

C
1 = P2 < S5 S g ao® gy

k

Since there are? different possible values of(k), a crude estimation yields

ste(s,d
D x4

— Pcfl? <
If = Pefl? < =955 mas

which is the stated result. O

We note that for a shifted-dimensional Gaussiaer 1*—2°/2, we have the relation
Avele=al®/2 — (q/\/2)7¢~17=a1"/2 and so we now neeft > []¢_,(1 + |an|?) to
obtain a good approximation.

Error of the Galerkin Method with Reduced Tensor Hermite Basis. With the proof of
Theorem 1.3 we then obtain the following result from Theofefk

Theorem 1.6 (Galerkin Error). Consider the Galerkin method with the hyperbolically
reduced tensor Hermite basis applied td-alimensional Sclirdinger equation (0.1) with
apotentialV (z) = (1 + |=|?)B(z) with bounded3, with initial value (0) = Pic(0).
Then, for any fixed integerthe error is bounded by

i (t) = ()] < C(s,d) K~/* (1 +1) max max_[|A%y(7)]|

0<7<t 0|00 <s+2
with the maximum over alt = (o1, ...,04) With0 < 0,, < s+ 2 for eachn. O
Numerical Integration Using Sparse Grids. The matrix elementsy; | H | ) for

J, k € K contain high-dimensional integrals. These can be apprabeédiby numerical in-
tegration on sparse grids, following Smolyak (1963), Zer{®891), Gerstner & Griebel
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(1998) and using an adaptation that takes care of the inngdg®scillatory behaviour of
the high-order Hermite functions.

We describe Smolyak’s sparse grid quadrature when basetedimensional Gauss—
Hermite quadrature in every coordinate direction. Fet 0,1,2, ..., letz! denote the
zeros of the Hermite polynomial of degré‘e and letw! be the corresponding weights and

w! = w! e@)?, so that we have the one-dimensiodaboint Gauss—Hermite quadrature

=

formula
2¢ 00
Quf =Yt~ [ fads,
i=1 -0
We introduce the difference formulas between successiadsle

Aof =Quf — Qe f,

and for the lowest level we sely f = Qo f. The full tensor quadrature approximation at
level L to ad-dimensional integrafRd flz1,...,zq)dxy ... dxy reads

2k 2k
QL®...®QLf:Z...Zwi...wif(xfl,...,xi),

ii=1  ig=1

which can be rewritten as

L L
QLe..0QLf=> .Y A,®..®@A,f (1.22)

¢1=0 £4=0

and useg2”)¢ grid points at whichf is evaluated. This number is substantially reduced
in Smolyak’s algorithmwhich neglects all contributions from the difference terwith
l1 + ...+ ¢4 > L and thus arrives at the quadrature formula

> Avewduix [ S m) e do. (1.23)
Rd

L4 +HLg<L

Here, f is evaluated only at the points of teparse grid

I ={(zh )+ g < LY,

i1y

which has onlyO(2% - L4=1) points; as an illustration see Fig.lIl.1.2 fér = 5 and
d=2.1f f(z) = g(z) - e~ 1=I"/2 with a functiong € L2(R%) for which the coefficients
¢m = {¢m | g) In the Hermite expansion gf satisfy

d
lem| < C [T +ma)™" (1.24)
n=1

with » > 1, then the contribution of the omitted terms with+ ... + ¢4 > L and hence
the quadrature error can be shown, by a tedious exercise,folmded by)((2£)~").
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)
o
'
H

-8 6 -4 -2 0 2 4 6 8
Fig. 1.3.Gauss—Hermite sparse grifl & 5, d = 2).

Remark A disadvantage of Gauss—Hermite quadrature formulas ifattiehat they are
not nested: the quadrature points of le¢el 1 are not a subset of those of levelAs an
alternative, which will not be explored here, one might ¢destransformation to a finite
interval and using the trapezoidal rule or Clenshaw-Cguesdrature there. With a nested
quadrature, the sparse grid contains approximately hatfzasy grid points as for the case
of a non-nested basic quadrature formula with the same nuaflspiadrature points. It
is not clear if the otherwise excellent properties of Gatiesmite quadrature are indeed
offset by nested quadratures for suitably truncated osfoamed integrals.

Computation of the Matrix Elements. The integrand;;; in the matrix element

w1 Wied = [ ei@Wa e o= [ fuwd

becomes highly oscillatory for multi-indicgsand & with large components. In this situ-
ation, an estimate of the type (1.24) cannot be expectedltbthee with a constant that
is uniform inj andk, but rather (witha . = max{a,0})

d
|C7H(.77k)| SCH(1+(mn_]n_kn)+)_T (125) 11 :Cj km
n=1

for the Hermite coefficients,, (j, k) of g;x(z) = f;.(x)e/*I"/2. This suggests a mod-
ification of Smolyak’s algorithm in which terms in the sumZ42) are discarded only
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if they are of sizeO((2)~") under condition (1.25). Such an adaptation of the algo-
rithnj reads as follows: for a Qair of multi-indicgsandk, let ¢4, ...,¢,; be such that
c- 271 < max{j,, k,} < c- 2% forachosen constant We discard only terms with

(51 —2\1)++...+(€d—z\d>+ > L.
In the case of a hyperbolically reduced multi-index set&},.tve have actually
171 —i—...—i—Zd < 2logy K + ad,

wherea € R depends only om. Such a modification can thus be implemented by in-
creasingL in dependence oK by 2 log, K. The number of evaluations of the potential
on the resulting sparse grid thus beconi¥gs? - 2% - (L + 21log, K)9~1) and hence

is essentially quadratic ik of (1.18). The choice of. depends on the smoothness and
growth properties of the potential.

111.1.3 Collocation Method, 1D Fourier Basis

Truncation, Periodization, Rescaling.We start from the one-dimensional Schrodinger
equation (0.1) on the real line. If we expect the wavefumctimbe negligible outside an
interval[a, b] on the considered time interval, we may replace the equaticthe whole
real line by that on the finite interval with periodic boungaonditions. After a rescaling
and shiftr — ax + 5 we may assume that the space intervghis, 7

3_1/)( t)f_iaz_w
ot N T 24 Ox2

(z,t) + V(2)p(x,t), € [-m ], (1.26) |111:schrod-1d

with periodic boundary conditionss(—, t) = ¥ (x, t) for all ¢.

Collocation by Trigonometric Polynomials. We look for an approximation to the wave
functiony(z, t) by a trigonometric polynomial at every instant

K/2-1
Ve rie = Y a®d, sclmd,  @27)
k=—K/2

where K is a given even integer. We might determine the unknown Eounefficients
c,(t) by a Galerkin method on the space of trigonometric polyndsiaa in the previous
section. Here, we consider instead the approachdbypcation which requires that the
approximations satisfy the Schrodinger equation in adfinitmber of grid points, as many
points as there are unknown coefficients. We thus choos&tkequidistant grid points
z; =j-2r/K withj = —K/2,...,K/2 —1and require that

31/)1(( _ )7_i321/)1(
at ot = 21 Ox?

1

(j,t) + V(zj)Y(zj,t) (j=-K/2,...,K/2—-1).

1.28)
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This condition is equivalent to a system of ordinary differal equations for the coeffi-
cientsc (), as we show next.

Discrete Fourier Transform. Let F : CX — C¥ denote theliscrete Fourier transform
of length K, defined by

K/2—-1
. 1 iy
0=Frv  with B = | 2}:{/2@““]'2”/1( v (k=-K/2,...,K/2—1).
J=—

(1.29)

The inverse transform is thefi,' = K77, thatis,

K/2—1
v=Fg'0 with v = Y KL (j=-K/2,..., K/2—1). (1.30)
k=—K/2

The familiarfast Fourier transform(FFT) algorithm (see, e.g., the informative Wikipedia
article on this topic) computes either transform withK log K') complex multiplications
and additions, instead of thi€2 operations needed for a naive direct computation from
the definition.

Differential Equations for the Fourier Coefficients and Grid Values.From (1.27) we
note that the vector of grid values ¢f is the inverse discrete Fourier transform of the

coefficient vector:
K/2—1 1 K/2—1 -
(@) 1 e = F (en®) o (1.31)

This relation and differentiation of (1.27) yield that thellocation condition (1.28) is
equivalent to the following differential equation for theatorc = (i) of Fourier coeffi-
cients: with the diagonal matricé3yx = 4; diag(k®) andVk = diag(V (z;)),

i¢ = Dxc+ FxViFg'ec. (1.32)

Alternatively, by taking the inverse Fourier transform atbsides of (1.32) and recalling
(1.31), we obtain a system of differential equations fordtid valuesu; (t) = ¥ x (x;, t):

for the vectors = (u;),
it = F Dy Ficu + Vigu. (139)

We observe that the matrices on the right-hand sides of (&r&2(1.33) are all Hermitian,
becausa/K Fx is a unitary transformation.

Approximation by Trigonometric Interpolation. For a continuougr-periodic function
f we denote by f the trigonometric polynomial witli’ Fourier modes ranging from
—K/2to K/2 — 1 which interpolateg in the K equidistant grid points; = j - 2r/K:

K/2—-1

ik . _ K/2-—-1

Tif@) = > ae™ with (en)f/> 7, = Fre(Fa) 20,
k=—K/2



I1l.1 Space Discretization by Spectral Methods 77

Theorem 1.7 (Interpolation Error). Suppose thaf is a2x-periodic function for which

the s-th derivativeds f € L2, for somes > 1. Then, the interpolation error is bounded in
L? by

If=Zxfl <CK |01l
whereC depends only os.

Proof. We write the Fourier series gfand the trigonometric interpolation polynomial as

00 K/2—1
flz) = Z ap ' , Ik f(x) = Z o e
k=—o0 k=—K/2

From the interpolation condition it is verified that the da@énts are related by thedias-

ing formula
o0
Ckp = Z Ak+LK -

l=—o0

Using Parseval’'s formula and the Cauchy—Schwarz inequalé thus obtain

K/2—1 )
Hf—ZKfH2 = Z (’ZakJrlK’ +Z|ak+m|2)
k=—K/2 {#0 040
K/2—1
< ¥ (Z(kJréK)*QS (k) g e
k=—K/2 {#0 040
3 ) (o L) g o)
040
< CPKTE Y Ral’ = CPET o),
k=—oc0
which is the desired result. O

In the same way it is shown that for every integee> 1,

|0 (f —Ir f)|| < CK~* |9zt f . (1.34) [111:ipol-diff

Error of the Collocation Method with Fourier Basis in 1D. We obtain the following
error bound.

thm col [ -error | Theorem 1.8 (Collocation Error). Suppose that the exact solutigrit) = (-, t) has

d3+24)(t) € L for everyt > 0, for somes > 1. Then, the error of the Fourier collocation
method (1.28) with initial valué (z,0) = Zx(z,0) is bounded inL? by

lorc(t) =) < CK™ (1 +1) max 195724 (T)]]

whereC depends only os.
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Proof. The error analysis is based on reformulating method (1.28raequation with
continuous argument: by interpolation on both sides off},.2

OV 1 9%k

(z,t) + I (Vi) (2, 1), T € [-m, 7. (1.35) [111:coll-cont

1

T Y =

On the other hand, using thak Vv = Tk VZk1, we obtain that the interpolant to the
solution satisfies the equation

OTg) 1 9°TIky
i——(z,t) = ——
ot 2 Oz?

(z,t) + (Zx VIk)(z,t) + 6x (1), (1.36) [I11:coll-ipol

with the defect

1 0%  O0*Igy
= (Zg— — .
O 2/1( K922 Ox? )
The errorz i = ¥, — Tkt thus satisfies the equation
,aEK - 1 626}(

In terms of the Fourier coefficients= (ej,) andd = (dy) given by

K/2-1 K/2—-1
ex(t)= Y e(t)e™, dx(x,t)= Y d(t)e™”,
k=—K/2 k=—K/2

this reads, as in (1.32):
i¢ = Dxe+ FrViFrle—d,

with Hermitian matrices on the right-hand side, sirf€g is unitary. Forming the Eu-
clidean inner product witl, taking the real part and integrating we obtain, by the same
argument as in the proof of Theorem 11.1.5,

le(®)]] < lle(0)]) + / ld(r)]l dr

By Parseval’s formula, this is the same as

t
lex(®ll < lexO)] + [ 6x(r)ldr.
We estimaté§ i (7) using Theorem 1.7 fa92¢(-, 7) and (1.34) withm = 2:
65 (T)II < CK* [0 29 (-, 7))l -

Recalling that x = ¥k —Zx 1 and using Theorem 1.7 to estimate the interpolation error
I — 1, we obtain the stated result. O
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Comparison with the Fourier Galerkin Method. If we use the Galerkin method (1.1)
with the basis~** (k = —K/2,..., K/2 — 1), then we obtain equations for the coeffi-
cients that are very similar to (1.32):

it = Dice+ Vice. (1.37)

Here,V is the matrix with the entryl. [ =47 V(z) ¢*** dz at position(j, k). In the
collocation method (1.32), this integral is simply repldbg the trapezoidal sum approxi-
mation+ Y-, e~ "% V() e, with no harm to the error of the method as Theorem 1.8
shows.

[11.1.4 Higher Dimensions: Hyperbolic Cross and Sparse Grds

The above results extend immediately to a full tensor-gpigraximation in higher di-
mensions. The number of grid points and Fourier coefficiembe dealt with is thed ¢

in dimensiond with K grid points in each direction. An approach to a reduced cempu
tational cost uses a hyperbolically reduced tensor basgménentials and an associated
sparse grid, leading to a discretization working wiiti/ (log K)9~1) grid points and
Fourier coefficients. The construction is based on a disdfetirier transform on sparse
grids given by Hallatschek (1992).

Hyperbolic Cross.Instead of considering the full tensor product badig’ = e*171  ¢ikawa
with —K/2 < k, < K/2 — 1, we consider a reduced set of multi-indices=
(k1,...,kq), which is constructed as follows. We order the set of integeto differ-
ent levels by settin@o = {0},Z, = {-1},Z> = {-2,1},Z3 = {—4,-3,2,3},and in

general
Zy={kelZ:-2""<k<-202or22 <k <21}, (1.38)

This yields a partition of the integers into different levels indicated in the following
diagram of the line of integers:

8 7 6 5 -4 -3 2 -1
4 4 4 4 3 3 2 1

We then define thbyperbolic cross

0 1 2 3 4 5 6 7
0 2 3 3 4 4 4 4

K=K%=1{(ki,...,kq): Thereare,,... Lawith¢; + ...+ <L

such thatk,, € Z,, forn=1,...,d}. (1.39) |I I'l:hyp-cross

We will work with the basis of exponentiaéé®* with k € K. As in Lemma 1.4 it is seen
thatC hasO (2 - L4~1) elements.

Sparse Grid. As we now show, the wave vectors in the hyperbolic cross aaeifective
correspondence with a set of grid point$in2x]¢. Consider first the hierarchical ordering
of grid points in the interval0, 27) obtained by setting{, = {0}, X; = {n}, X2 =

{Z,35}, X3 ={F,3, 5% T} and in general
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ko

k1

Fig. 1.4.Hyperbolic cross and sparse grid (L=6).

Xy = {(Qj -1)

27

2¢

g

2
27

—1.... 25—1}.

Clearly, each grid point it/ is in a one-to-one correspondence with an integ&in\Ve
define thesparse gridcorresponding to the hyperbolic crossas

=TI ={(x1,...,2q4): Thereardy,... ,lywithl; 4+ ...+ 04 <L
such thatz, € X,, forn=1,...,d}.

We will use quadrature and trigonometric interpolationlois grid.

(1.40) [111:sparse-grid

Smolyak’s Sparse-Grid Quadrature. We consider the trapezoidal (or rectangle) rule
approximation to the one-dimensional integﬁllfowr g(z) dx of a27-periodic function

gy
2t—1

4
Q=2 0(im) =" 3 o),
j=0

and the difference between two levels,

Apg = Qug — Qr19,

m=0ze€X,,

Aog = Qog -

As in Section Ill.1.2, we consider Smolyak’s quadrature domulti-variate function
f(z1,...,2q), which uses values of only on the sparse griff = I'Z:

Srf=5¢f=

b1+ +La<L

It has the following useful property.

>

Ag1®...®Agdf.

(1.41) |111:sparse-snol yak

Lemma 1.9. Smolyak’s quadrature (1.41) is exact for the exponentidt§ for all multi-

indicesk in the hyperbolic cros&¢ .
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Proof. We first note that the one-dimensional trapezoidal @jayives the exact valu@
for exponentialg?** whenevelk is not an integral multiple of, and it gives the correct
valuel for k£ = 0. With the formula

L
Sif=> A®Sif,
=0
the result then follows by induction over the dimension. O

Remark 1.10. Unlike the full-grid case, the quadratuf is not exact for products
e~ zeike with j, k € K¢. The problem arises with terms suchjas (—2£-1,0,0,...,0)
andk = (0, —2L710,...,0). Sincek — j € K4, for j, k € K¢, we note that such prod-

1

ucts are integrated exactly 18§, , hence with roughly the squared number of grid points.

(Cf. the similar situation in the Hermite case discussetieend of Section 111.1.2.)

Sparse-Grid Trigonometric Interpolation. The one-dimensional trigonometric interpo-

lation of a27-periodic functionf on a grid of2¢ equidistant grid points is given as

2¢-1_1
Iig(z) = Z cLe* with ¢ = Qe *%g).

k=—20-1

We letA, = I, — I,_; denote the difference operators between successive Igvidhs
Ay = Ip). The trigonometric interpolation of a multivariate fuiwet f on the full tensor
grid with 2 grid points in every coordinate direction can then be wnitis

L L
Z...ZAgl®...®Agdf(xl,...,xd).

£1=0 £L4=0

Hallatschek (1992) introduces the corresponding opexaitbrevaluations off only on
the sparse grid” = I'¢ as

Irf(zr,...oxa)= >, Ay ®...® A, f(21,...,2a) (1.42)
L1+ +04<L

and notes the following important property.
Lemma 1.11. Zr f interpolatesf on the sparse grid".

Proof. This follows from the observation that the terms omittedvirthe full-grid inter-
polation operator all vanish on the sparse grid. O

Sparse Discrete Fourier Transform.We observe thaf, f(z) forx = (z1,...,z4) IS @
linear combination of exponentiadé®® with k in the hyperbolic cros = K¢:

|I I'l:sparse-ipol -operator
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Irf(z)= Z cp et

ke

This defines a discrete Fourier transform

Fr:Cl'—=ck: (f(@)) pep = (cr)rex - (1.43) [111:sparse-dft |
With the map that determines the grid values of a trigonoimptilynomial from its co-
efficients,
T : CF =l ik 1.44) [111: -idft
c — (Ck)ke)c — (];Ccke )zer’ (1.44) | spar se-i |

we have from the interpolation property thatFf = f forall f = (f(x))zer, and
henceFr is invertible and

Fil=1x. (1.45) |I I'l:sparse-i nverse|

Both Fr and its inverse can be implemented with{2” - L.¢) operations, using one-
dimensional FFTs and hierarchical bases; see Hallatsdl®8R] and Gradinaru (2007).

There is no discrete Parseval formula t6p, but by Remark 1.10, the following
restricted Parseval relation is still valid: with the inpeoduct(f | g)r = Sr(fg) onI"
and the Euclidean inner produgct ) on IC,

(Frle|Frtdyr = (c|d)x  if ey =di, =0 for k € K¢ \ K g - (1.46) |111:sparse-parseval

Approximation by Sparse-Grid Trigonometric Interpolatio n. Error bounds are given
by Hallatschek (1992) in the maximum norm, and by Gradin2008) inL? and related
norms. TheL? error bound reads

IZrf — fIl < C(d,s) (L+ 1) (25) = |05 .. o5t £l (1.47) [111:sparse-ipol -error

The estimate is obtained by carefully estimating the terftas® ... ® Ay, f that have
been omitted in (1.42).

Collocation of the Schiddinger Equation on Sparse Grids.Gradinaru (2008) studies
the collocation method, which approximates the solutiomlisigonometric polynomial
with coefficients on the hyperbolic cross,

Yic(x,t) = Z cr(t) et (1.48) ‘I I'l:sparse-psi K
kek

and requires the Schrodinger equation to hold in the paifiise sparse grid. This yields
the system for the Fourier coefficients= (cx)kex,

ic = D,Cc—i—}'pr}';lc, (1.49) | I'11:sparse-ode

where(Dic), = 2% |k|%c for k € K, and VT is the diagonal matrix with entrielg(x)
for x € I'. Gradinaru (2008) shows that the error of the collocatiothme over bounded
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time intervals is bounded b§ (L~ (2)~*) if mixed derivatives up to ordes + 2 in
each coordinate direction are bounded.in

An unpleasant feature in (1.49) is the fact that the ma?Fﬁ'Wp}‘;l is not Hermitian,
since the sparse-grid Fourier transfoffp is not a scalar multiple of a unitary operator,
unlike the full tensor-grid case. This can give numerictgfacts such as the loss of con-
servation of norm and in theory may lead to an exponentistiead of linear, error growth
in time, with a rate that is given by a bound of the skew-Heanipart of}'prfgl.
Moreover, some of the time-stepping methods considereaeistibsequent sections are
not applicable in the case of non-Hermitian matrices.

Discretizations on Sparse Grids Having Hermitian Matrices Are there methods with
similar complexity and approximation properties to therspagrid collocation method
but which have a Hermitian matrix? We start from the intetaien of the collocation
method as a Galerkin method with trapezoidal rule approtionaf the integrals in the
matrix elements, as noted at the end of Section I11.1.3, @&md'er a multi-dimensional,
sparse-grid extension that approximates the matrix elesisnSmolyak’s quadrature.
We consider the inner product @i’ defined by Smolyak’s quadrature on the sparse
grid,
(fla)r = Sr(f9).

and the Euclidean inner produgt -),c on C* . With respect to these inner products, we
take the adjointF')* of '

(Frlalfir=(a|(Fr") fix VfeCl aeCr.

Then,(F.')*f = (Sr(e=**f)), ., » and we obtain that

FryVeFst = (Sr(e V(@) ee))
(Fr)'VrFr F(e (z)e ) JkeK
is the Hermitian matrix that contains the sparse-grid gatale approximations to the
Galerkin matrix elements.

Instead of (1.49) we would like to determine the coefficiaftél.48) from

i¢ = D+ (FpH)*VrFrle. (1.50) | I'11: sparse-ode-symm

This method can be rewritten as a quasi-Galerkin method @hyperbolic-cross space
Vi = spar{e™? : k € K}: determine)(t) € V (i.e., of the form (1.48)) such that

<@K Ok

ot
Here, the last inner product is the discrete inner producthensparse grid instead of
the usualL? inner product. Unfortunately, it appears that this doesgive a convergent
discretization for the hyperbolic cro&s = K¢ and the sparse grifi = I'¢ of the same
level L. We describe three ways to cope with this difficulty:

1

> = <<p;¢ ‘ - iAU);C> + <<p;c ’ V1/);¢>F Veox € V. (L.51) [I11:sparse-qgal
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1. Discrete Galerkin Method with a Simplified Mass Matike replace thé? inner
products in (1.51) by the discrete inner product/on= I'¢. Then we obtain a standard
Galerkin method with a discrete inner product. The assediatthogonal projection to
Vi is just the interpolatiod . Optimal error bounds are then obtained with the standard
proof for Galerkin methods, as in Theorem 1.3. However esthe exponentials® = k €
IC, do not form an orthonormal basis with respect to the disdreter product, there are
now non-diagonal matrices

My = (mjk)j,ke,C = ((e"” |eik'z>r)j,k€,c, Tk = %(] . lwnjk)j_’ke,C
in the differential equations for the coefficients:
Myé = Tie+ (Fp')*VrFrle.
By (1.46), the mass matrix partitioned into blocks corresfing tokX¢ ., andk¢ \ K¢

L/2 L/2
takes the form
I B*
=5 )

with sparse matriceB and N. An approximate Choleski factor @fx is given by

(I 0 , 4 (T 0 . (T B*
oo (50w e () wa e (5 )
where only the lower diagonal block differs from thatlifyc. ReplacingM by CC*, we
obtain forb = C*¢

b=C""T(CHb+ CHF) VrFRHOT)D. (1.52) [I11:fourier-b-eq

Since only the lower diagonal block dffx has been changed, we can still get error
bounds as for the full Galerkin method, but with” replaced by2—%/2.

2. Discrete Galerkin Method with Refined Sparse GBg.Lemma 1.9, the mass ma-
trix becomes the identity matrix if we choose the finer grid

r=rg

with 2L instead ofL levels and thus, alas, roughly the squared number of gridtgoi
In that case, thé? inner products (1.51) are equal to the discrete inner prisduel’,
and we obtain a standard Galerkin method with a discrete iproeluct. The associated
orthogonal projection t¥x is PicZr, whereP is the orthogonal projection with respect
to the L? inner product. Optimal error bounds are then obtained wi¢hstandard proof
for Galerkin methods, as in Theorem 1.3.

3. Galerkin Method with an Approximated PotentisiVe use the standard Galerkin
method with L2 inner products, and compute the matrix elements of the gaten
(e'I7 |V |e*), exactlyfor an approximated potentidf(z) ~ >, c v Ume™ " (POS-
sibly over a coarser hyperbolic crogd C K), noting that(e™/® | "™ ==} £ () only
for j = k + m. This requiresO(#M - #K) operations for computing a matrix-vector
product.
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[11.2 Polynomial Approximations to the Matrix
Exponential

After space discretization, we are left with a linear systédmifferential equations

i = Ay @)

with a Hermitian matrixA of large dimension and of large norm, such as (1.3) or (1.32)
or (1.50) or (1.52). The latter example also shows how to @éhlthe presence of a mass
matrix by a (possibly incomplete) Choleski decompositibhe solution to the initial
valuey(0) = yo is given by the matrix exponential

y(t) = e Ay, (2.2) ‘ I11:matrix-exp

We study time stepping methods that advance the approxsoatgon' from time¢” to

t" Tl ="+ At, fromy™ toy™ 1. In the present section we consider methods that require
only multiplications of the matrix4 with vectors, and hence are given by polynomial
approximationsP( At A) to the exponential:

Yyt = P(AtA)y" .

We consider in detail th€hebyshev methodhere the polynomial is choserpriori from
given information on the extreme eigenvaluesdgfand theLanczos methqdvhere the
polynomial is determined by a Galerkin method on the Krylolkspace, which consists
of the products of all polynomials o\t A of a given degree with the starting vector. In
the Lanczos method, a different polynomial is implicitlyesgted in every time step.

We mention in passing that there are further interestinchout that require only
matrix-vector products withd: the Leja point methodas similar approximation prop-
erties to the Chebyshev method but in contrast to the Chebysiethod, higher-degree
polynomials of the family are constructed by reusing the potations for the lower-
degree polynomials, cf. Caliari, Vianello & Bergamascli@§2); explicitsymplectic meth-
odspreserve the symplectic structure of the differential ¢igunasee Gray & Manolopou-
los (1996) and Blanes, Casas & Murua (2006).

[11.2.1 Chebyshev Method

A near-optimal polynomial approximation to the expondnigagiven by its truncated
Chebyshev expansion. We describe this approach, whicheicdhtext of Schrodinger
equations was put forward by Tal-Ezer & Kosloff (1984), ange@n error analysis based
on Bernstein’s theorem on polynomial approximations tdyditgfunctions on an interval.
We refer to Rivlin (1990) for background information on Cligbev polynomials and
to Markushevich (1977), Chap. 111.3, for the polynomial apgmation theory based on
Faber polynomials.

! The time step numbet will always be indicated as superscript in the notation.
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Chebyshev PolynomialsFor every non-negative integkr the function defined by

Ti(z) = cos(kf)  with 6 = arccosz € [0,7], for z € [-1,1] (2.3)

is in fact a polynomial of degrek, named thesth Chebyshev polynomiarl his fact is
seen from the recurrence relation

Ti1(z) = 22Tk (2) — Tpa(z), Kk >1, (2.9)

starting fromTy(z) = 1 andT;(z) = z, which is obtained from the trigonometric iden-
tity cos((n + 1)8) + cos((n — 1)0) = 2cos @ cos(nb). The Chebyshev polynomials are
orthogonal polynomials with respect to the weight functior- z2)~'/2 on[—1, 1]:

1

dx

Ti(z) T =0 for j#k, 2.5) |Ill:cheb-orth
| n@ne i # @5 |

as is seen by substituting= cos# anddz/v/'1 — 2 = df and using the orthogonality
of the complex exponentials.
Another useful formula is

2T (z) = (:1:+\/a:2—1)k+ (z— \/:1:2—1)k, (2.6) [I11:cheb-sqrt-fornula]

again verified by substituting = cos 6. TheJoukowski transform

w==&(z)=z+22-1, z=0(w) = %(w—i— %) (2.7) [111: cheb-j oukowski |
is the conformal map between the exterior of the intefvl, 1] and the exterior of the

unit disk, [w| > 1. (The branch of the square root is chosen such ¢ha&t — 1 ~ = for

z — o00.) The level setd. = {z : |®(2)| = r} = {¥(w) : |w| = r} forr > 1 are

ellipses with foci+1, major semi-axis' + r~! and minor semi-axis — r~!. Since the

Laurent expansion ato of (z — /22 — 1)* contains only powers~7 with j > k, the

integral of that function over a closed contdurencircling the interval—1, 1] vanishes

by Cauchy’s theorem. With Cauchy’s integral formula we tbb&in from (2.6)

1 D(2)"
2Ty (z) = / (2) dz, x € [-1,1], (2.8) [111:cheb-faber
r

211 zZ—x

which establishes an important relationship between thebgshev polynomials and the
conformal map: the Chebyshev polynomials are Faber polynomialdor the interval
[—1, 1]; cf. Markushevich (1977), Sect. 111.3.14.

Chebyshev and Fourier SeriesGiven a (smooth) complex-valued functigfx) on the
interval—1 < z < 1, we expand thér-periodic, symmetric function

9(0) = f(cos0)

as a Fourier series:
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g(9) = Z cp e with ¢ = % e 0 4(0) do

k=—o0 —T

or in fact, by the symmetry(—6) = ¢(6),
oo ) 1 sy
g(0) =co+2 Z cpcos(kf)  with ¢, = — / cos(kB) g(9) df .
T Jo
k=1

Substitutinge = cos 6 anddz/+/1 — 22 = df, we obtain theChebyshev expansion

oo 1
f(x):co+2;cka(:v) with ck:%/_lTk(x)f(x)\/ﬁC_ﬁ. (2.9) [I11:cheb-series

Chebyshev Approximation of Holomorphic Functions.We study the approximation of
a holomorphic functiory () by the truncated series with terms,

m—1

Smf(@)=co+2 Y exTi(x),

k=1

which is a polynomial of degree. — 1. The following is a version of a theorem by
Bernstein (1912); see Markushevich (1977), Sect. lll.3H&ed(z) = 2 + V22 — 1 s
again the conformal map (2.7) from the complement of thewalg—1, 1] to the exterior
of the unit disk, an@ (w) = 1 (w + 1) is the inverse map.

. thm bernstein] Theorem 2.1 (Chebyshev Approximation)Letr > 1, and suppose thaf(z) is holo-

morphic in the interior of the ellipsgh(z)| < r and continuous on the closure. Then, the
error of the truncated Chebyshev series is bounded by
T—m

|f(z) = Sm f(z)] Sz#(fﬂ")ﬁ for —1<ax<1,
2nr

with the mean valug(f,r) = 5= wjr [ (@ (w))] - |dw].

Proof. We start from the Cauchy integral formula over the elligse= {z : |®(z)| =
r} = {¥(w) : |lw| = r} and substitute = ¥ (w):

e L (2) 4o 1 I A .
f(z) d ,/w_Tf(!I/( )7 ) dw . (2.10) [I11:cheb-f-int

2mi Jp, oz —x 271 (w) —x

We expand in negative powers of

v (w) - —k—1
= E ak(x)w for |w| > 1, (2.11) |111:cheb-res
U(w) —x — (z) ol

where the Taylor coefficients ab are given as
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! k
ak(I):i. wkde:i/ &dz.
270 Jj)=r V(W) —x 2mi Jp oz —
By (2.8), these coefficients turn out to be simply
a(z) = 2 Ty(z).
Inserting (2.11) into (2.10) therefore yields
_1 - —k-1
R 2 Y Tula)u du,
Since|Ti(z)| < 1for—1 <z < 1, we have folw| =r > 1
- —k—1 N
‘ZT’“(:C)M ‘SZT Tl
k=m k=m
and the result follows. O

Chebyshev Approximation of Complex ExponentialsThe complex exponentiaf«®

is an entire function, and we can choase Theorem 2.1 dependent amto balance the
growth of u(e*“=, r) with r against the decay of ™. This gives the following corollary
showing superlinear convergence after a stagnation up 4o |w|. Since the polynomial
must capture the extrema and zeros®f{wz) andsin(wz) for a uniform approximation,
it is obvious that at least a degree proportional to|w| is needed to obtain an error
uniformly smaller than 1. Once this barrier is surmountbd,érror decays very rapidly
with growing degreen.

|-t hm cheb- exp | Theorem 2.2 (Eventual Superlinear Convergence tei“*). The error of the Chebyshev

approximationp,,_1(z) of degreem — 1 to the complex exponentiat*® with real w is

bounded by
_max |pm—1(z) — ™| <4 (61*@/27?1)2 %) for m > |w|. (2.12) |111:cheb-exp-error

Proof. We haveu(e™?,r) < max.cr, [e?| = el“l"=7"")/2 where the maximum is
attained at = +1(ir + 1) on the minor semi-axis. Theorem 2.1 thus gives us the bound

. Qp—m _
max |pm—1(9€) _ ezwm| S r T e|w|(?“fr ])/2.

—1<z<1 1—r

Choosingr = 2m/|w| > 2 then yields the stated result, which could be slightly refine
O
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V:fig:cheb-err

10710 L

0

Fig. 2.1. Chebyshev approximation ef““. Maximum error on[—1, 1] versus degree, far =
4,8, 16, 32. Dashed: Error bounds of Theorem 2.2.

The Chebyshev coefficients &f* are given explicitly by Bessel functions of the first
kind: by formula (9.1.21) in Abramowitz & Stegun (1965),

™

cp = —/ eiwcos@ COS(k@) df = Zk,]k(w) . (213) | I'l1l:cheb-bessel |
0

Transforming the Interval. Frome®? with —1 < 2 < 1, uniform polynomial approxi-
mation ofe % for o < ¢ < (3 is obtained by transforming

2 a+f _a+f 0 —«
x_ﬂ—a(g 2 ) b= tr——
We then approximate % = e Hat0)/2¢-iw(f-a)/2 yging e~ @(F-)/2 ~ ¢; +

250 o T() with ¢, = iFJi (= 252) = (—i)* Jx (252), so that

m—1
—i€ o, —ila+p)/2 Z 2 _a+p
e e <CQ+2klcka<ﬁ_a(f 5 )>> for agfgﬂ

Chebyshev Method for the Matrix Exponential Operator. Let A be a Hermitian matrix
all of whose eigenvalues are known to lie in the inteffuab]. As proposed by Tal-Ezer
& Kosloff (1984), we approximate the action of the matrix erpntial on a vector by
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e Ay x P (At A,

where

m—1
_ —iAt(a+b)/2 2 _(a+?)
Ph_1(AtAyv=e <cov +2 ,;_1 ci Th ((b 3 (A 5 I) v

(2.14) |111:cheb-exp-A

with ¢, = (—4)*Ji(At(b — a)/2). We observe that the right-hand side is in fact a func-
tion of the productAt A. The actual way to compute (2.14) is by a recursive algorithm
proposed by Clenshaw (1962) for the evaluation of trunc@eebyshev expansions of
functions.

Algorithm 2.3 (Clenshaw Algorithm). Let X = %)(A — @I), initialize
dm+1 = d, = 0 and compute recursively

di, = cv + 2Xdg41 — di42 for k=m-1,m-2,...,0.
Then, the approximation (2.14) is given as
mel(At A)U = do — dQ .

This identity is readily verified using the Chebyshev reenoe relation (2.4) for the
terms in the sum, descending from the terms of highest deg@teealgorithm requires
m matrix-vector multiplications to comput®,,_; (At A)v and needs to keep only three
vectors in memory.

hm cheb- met hod | Theorem 2.4 (Error of the Chebyshev Method)Let A be a Hermitian matrix with all

its eigenvalues in the intervéd, b], and letv be a vector of unit Euclidean norm. Then,
the error of the Chebyshev approximation (2.14) is bounddte Euclidean norm by

2 W

| Pt (At A)v — eiiAtAvH <4 (617(“’/27”) )m for m>w

2m
with w = At (b —a)/2.

Proof. For a diagonal matrix4, the estimate follows immediately from Theorem 2.2
and the linear transformation between the interyalsa, At b] and[—1, 1]. Since every
Hermitian matrixA can be unitarily transformed to diagonal form, we obtainrtseilt as
stated. O

Step Size Restriction.The conditionn > w can be read as a restriction of the step size

for given degreen:
At < 2
b—a
This can also be viewed as saying that at least one matritormeuiltiplication is needed
on every time interval of length/(b — a). In the treatment of the Schrddinger equation,




111.2 Polynomial Approximations to the Matrix Exponential 91

this length shrinks as the spatial discretization is refif@dllustration, consider Fourier
collocation in one space dimension, with Fourier modes. For the matrit = Dy +
Fr Vi Fi' of (1.32), the eigenvalues lie in the interVal b] with

1 K2
a:mwinV(x), b:ﬂT—i_meV(x)'

For largeK, or smallAz = 27/K, we have thatv = A¢(b — a)/2 is approximately
proportional toAt K2, or

At
w n~ m .
The conditionm > w for the onset of error reduction therefore translates irgtep-size
restriction
At < Cm Az?, (2.15) [111: cheb-dtdx]

and the number of matrix-vector multiplications to coverigeg time interval is thus
inversely proportional ta\z2.

I11.2.2 Lanczos Method

subsec: | anczos |

A different approach to approximately computieigf“*4v using only the action oft on
vectors is based on a Galerkin approximationgo= Ay on the Krylov space spanned
by v, Av, ..., A v. A suitable basis for this space is given by the Lanczostitara
named after Lanczos (1950), which has become a classic iemcathlinear algebra pri-
marily because of its use for eigenvalue problems and spluirear systems; see, e.g.,
Golub & Van Loan (1996), Chap. 9, and Trefethen & Bau (199Rg€ VI. The use of the
Lanczos method for approximatirg *“*4v was first proposed by Park & Light (1986),
properly in the context of approximating the evolution aer of the Schrodinger equa-
tion. Krylov subspace approximation to the matrix exporamperator has since been
found useful in a variety of application areas — and has bemmobrably included as
the twentieth of the “Nineteen dubious ways to compute theoeential of a matrix”
by Moler & Van Loan (2003). Error analyses, both for the Heram and non-Hermitian
case, have been given by Druskin & Knizhnerman (1995), Haatio& Lubich (1997),
and Saad (1992).

Krylov Subspace and Lanczos Basid.et A be anN x N Hermitian matrix, and let
be a non-zero compleX-vector. Themth Krylov subspacef CV with respect tad and
vis

Ko (A, v) = sparfv, Av, A%v,..., A" 1), (2.16) [I11:krylov-space

that is, the space of all polynomials dfup to degreen — 1 acting on the vectow.

The Hermitian Lanczos methdouilds an orthonormal basis of this space by Gram-
Schmidt orthogonalization: beginning with = v/||v]|, it constructsv,.1 recursively
fork =1,2,... by orthogonalizingdv, against the previous; and normalizing:



92 [ll. Numerical Methods for the Time-Dependent SchrgeinEquation

k
Tht1,k V41 = Avg — E Tik Uj (2.17) |I Il:krylov-lanczos-iter
j=1

with 7, = v Avy, for j < k, and with7,41; > 0 determined such that, is of
unit Euclidean norm — unless the right-hand side is zero hitlwcase the dimension of
Km(A,v) is k for m > k and the process terminates.

By the mth step, the method generates fiiex m matrix V,,, = (v; ...v,,) having
the orthonormal Lanczos vectars as columns, and the x m matrix T,,, = (7;) with
7k = 0for j —k > 1. Because of (2.17), these matrices are related by

AV = Vi T + Tont 1. mVms 165, (2.18) [111:krylov-AV

whereel = (0...01) is themth unit vector. By the orthonormality of the Lanczos
vectorsuvy, this equation implies

= VA @19

which shows in particular thé&k,, is a Hermitian matrix, and hence a tridiagonal matrix:
Tk = 0for |j — k| > 1. The sum in (2.17) therefore actually contains only the two
terms forj = k — 1, k. For a careful practical implementation, error propagatod
the loss of orthogonality due to rounding errors are a cantarlargerm, and (selec-
tive) reorthogonalization can substantially improve ttebgity properties; see Golub &
Van Loan (1996), Sect.9.2. The following is a standard wersif the Lanczos iteration
without reorthogonalization of the Lanczos vectors.

Algorithm 2.5 (Hermitian Lanczos Algorithm Without Reorth ogonalization).Given
a Hermitian matrixA and a vectow of unit norm, the algorithm computes the Lanczos

vectorsvy, ..., vy, and the entriesy; = 7, ; and 841 = 7,41 ,; of the tridiagonal ma-
trix T,,,. After initializingv, := v, vo := 0, 81 := 0, the Lanczos iteration runs as follows,
forj=1,...,m:

ui=Av; — fivj_1, o = (vj|u)

U= U= vy, Bivr = [ull

Vi1 = u/ B -

Galerkin Method on the Krylov Subspace.Following Park & Light (1986), we consider
the Galerkin method (1.1) for the approximation of the aiitialue problem

w=Ay, y0)=v with |v|| =1

on the Krylov subspacg,,, (A, v) with m < N (m < 20, say): we determine an ap-
proximationu,, (t) € K., (4, v) with u,,(0) = v such that at every instant the time
derivative satisfies

(Wi | i () — Aum () =0 Ywm € Km(A,0).
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Writing u,,, (t) in the Lanczos basis,
Um(t) =Y cr(t) v = Vine(t)  with  c(t) = (cr(t))
k=1
we obtain for the coefficients the linear differential edomat
ic(t) = Tmel(t), c(0) =e; = (1,0,...,0)T

with the Lanczos matrig’,, = (vjAvk);{lk:l of (2.19). Clearly, the solution is given by
c(t) = e #*Tme;. The Galerkin approximation,, (t) = Vi,c(t) at time At is thus the
result of the following algorithm.

Algorithm 2.6 (Lanczos Method for the Exponential). With the Lanczos matricéds,,
andT,,, approximate

e Ay x Ve 1A g (2.20) [111:krylov-exp

For the small tridiagonal Hermitian matrig,,, the exponential is readily computed from
a diagonalization of,,. The algorithm needs to keep all the Lanczos vectors in mgmor
which may not be feasible for large problems. In such a siinathe Lanczos iteration
may be run twice with only four vectors in memory: in a first foncomputing7;,,, and
in a second run (without recomputing the already known immeducts) for forming the
linear combination of the Lanczos vectors according toQR.2

By the interpretation of (2.20) as a Galerkin method, we krfimwn Sect. 1l.1 that
norm and energy are preserved.

A Posteriori Error Bound and Stopping Criterion. From Theorem I1.1.5 with the
Krylov subspace as approximation space we have the errarcbou

[l () — y(t)]] < /0 dist( Aup, (), Kin (4, v)) ds .

By (2.18) we have
A (s) = AV e 5T e =V, T 7™ €1 + T 1,m U1 e €50 e
and therefore

dist( At (5), K (A, 0)) = Tsr,m | [e750]

m,1|’

where[],,.1 denotes thém, 1) element of a matrix. This gives us the following com-
putable error bound.

\m kryl ov- apost | Theorem 2.7 (A Posteriori Error Bound). Let A be a Hermitian matrix, and a vector
of unit Euclidean norm. Then, the error of theth Lanczos approximation to 2ty is
bounded by

At
|Vime™ 40T ¢ — e=idtAy| <7y / [T |ds. O
i |
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Fig. 2.2.Errors and error estimators (2.21) and (2.22) of the Lanozethod.

If we approximate the integral on the right-hand side by thbtrendpoint rectangle
rule, we arrive at &topping criterionfor the Lanczos iteration (for givedt) or alterna-

tively at astep-size selection criterigffior givenm),

At Tm+17m| [efmt T’“]m 1‘ < tol

(2.22) | I V:lanczos-rectangl e-rul e

for an error toleranctl, or without the factorAt for an error tolerance per unit step. This
criterion has previously been considered with differeteripretations by Saad (1992) and
Hochbruck, Lubich & Selhofer (1998). In view of Theorem 2ahetter choice is to take
a quadrature rule with more than one function evaluationefample, the Simpson rule:

AtTm+1=m(§ Heii%Tm}m,l‘ + % HeiiAtTm}m,ll) S tOl

With a diagonalized’,,,, this is computed at no extra cost..

(2.22) |IV: | anczos- si npson-rul e

Example. In Fig. Ill.2.2 we show the actual errors and the above erstimates of the
Lanczos method versus the iteration numierThe method is applied with the tridiag-

onal matrixAtA = % tridiag(—1, 2,

—1) of dimension 10000 withv = 4, 8,16, 32. The

eigenvalues ofAt A are in the interval0, 2w]. The vectorn was chosen as a random vec-
tor of unit norm. It is instructive to compare the errors witle nearly identical errors in
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Fig. 111.2.1 for the corresponding values of We further note that = c At/Az? can be
interpreted as a CFL number for a finite difference discagitin of the one-dimensional
free Schrodinger equatioid;y) = —c 921).

Lanczos Method for Approximating f(A)v. The following lemma follows directly from
the Lanczos relations (2.18) and (2.19).

Lemma 2.8. Let A be a Hermitian matrix and a vector of unit norm.
(a) If all eigenvalues ofd are in the intervala, b], then so are those &f,,,.
(b) For every polynomiap,,, 1 of degree at most: — 1, it holds that

Porr(A)0 = Vi s (T 1. 229

Proof. (a) If 6 is an eigenvalue df,, to the eigenvectow of unit norm, thenu = V,,,w
is again of unit norm, and by (2.19),= w*T,,w = u*Au, which is in[a, b].
(b) Clearly,v = V,,,e;. From (2.18) it follows by induction ovér = 1,2, ... that

A*Vyer = Vi Th ey

as long as the lower left entef, T%~1e; = 0. SinceT’~! is a matrix withk — 1 subdi-
agonals, this holds fdt < m — 1. O

For any complex-valued functiofi defined on[a, b], we havef(A) given via the
diagonalizationd = U diag\;)U* as f(A4) = U diag f(\,;))U*. Justified by (a) and
motivated by (b), we can consider the approximation

FA) ~ Vi f(T)er. (2.29

For f(x) = e~"At® this is (2.20). Lemma 2.8 immediately implies the followingeful
approximation result.

Theorem 2.9 (Optimality of the Lanczos Method).Let f be a complex-valued function
defined on an intervdh, b] that contains the eigenvalues of the Hermitian matti>and
let v be a vector of unit norm. Then, the error of the Lanczos appration to f(A)v is
bounded by

Vi f (Tm)ex — f(A)v] <2 inf max [pp_1(z) = f(2)],

Pm—1z€[a,b]
where the infimum is taken over all polynomials of degree atmo- 1.
Proof. By Lemma 2.8 (b), we have for every polynomigl_; of degree at most — 1,
Vi f(Tm)er — f(A)o = Voo (f(Tin) = Pm—1(Tm))e1 — (f(A) = pn-1(4))v.

Diagonalization ofA andT,,, and Lemma 2.8 (a) show that each of the two terms to the
rightis bounded bynax,cjq,p) | f (%) — pm—1(z)]. O
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Error Bound of the Lanczos Method for the Matrix Exponential Operator. Combin-
ing Theorems 2.9 and 2.2, together with the linear transion from the intervala, b]
to [—1, 1], yields the following result.

t hm kryl ov- exp| Theorem 2.10 (Eventual Superlinear Error Decay).Let A be a Hermitian matrix all

of whose eigenvalues are in the interyalb], and letv be a vector of unit Euclidean
norm. Then, the error of the Lanczos method (2.20) is boubged

. . 2w \™m
[Vipe #4t Tme, — g7 At Ay|| < 8 (el_(“’/Qm) 2—) for m>w
m

with w = At (b —a)/2. O

We remark that the step-size restriction (2.15) of the Chkby method applies to the
Lanczos method as well.

111.3 Splitting and Composition Methods

I11:sect:split |

The methods of the previous section have the attractiveifedhat they only require
matrix-vector products with the discretized Hamiltonidrof (2.1). However, the maxi-
mum permitted step size is inversely proportional to themof A, which leads to a time
step restriction taAt = O(Ax?), as we recall from (2.15). The splitting methods consid-
ered in this section can achieve good accuracy with no siwsthation, provided that the
wave function has sufficient spatial regularity.

[11.3.1 Splitting Between Kinetic Energy and Potential

We consider the Schrodinger equation

ip=Hy with H=T+V, (3.2) |III:spIit-schrod

whereT and V' are the kinetic energy operator and the potential, respygtior the
corresponding discretized operators. We will assume nadbon the self-adjoint operator
or matrix7'. In our theoretical results we will assume bounds of the mi@kl”, but the
method to be described can work well under weaker assungpti@m the practical side,
the basic assumption is that the equations

=T and ip=Vo

can both be solved more easily than the full equation (3.%)wA have seen in Chap.|,

on the analytical level this is definitely the case in the nigstretized Schrodinger equa-
tion: the free Schrodinger equation (orfly is solved by Fourier transformation, and the
equation with only the potentidf is solved by multiplying the initial data with the scalar
exponentiak—"V(#) at every space point. This situation transfers, in particular, to the
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Fourier collocation method of Section 111.1.3, where sotythe differential equations for
the kinetic and potential parts in (1.32) or (1.33) is dongaly, using the exponentials
of diagonal matrices and FFTs.

Strang Splitting. We consider time stepping from an approximatighat timet” to the
new approximatiogy™*+! at timet" ! = ¢" + At by

A . A
Pt = ISV oI ALT itV (32) |Ill:split-strang

This symmetric operator splitting was apparently first @ddy Strang (1968) and in-
dependently by Marchuk (1968) in the context of dimensimplitting of advection
equations. It was proposed, in conjunction with the Foumethod in space, for non-
linear Schrodinger equations by Hardin & Tappert (1973) madiscovered for the linear
Schradinger equation, in the disguise of the Fresnel emuaff laser optics, by Fleck,
Morris & Feit (1976). The scheme was introduced to chemibgkics by Feit, Fleck &
Steiger (1982). In combination with Fourier collocationsipace, the method is usually
known as thesplit-step Fourier methoth the chemical and physical literature.

Split-Step Fourier Method. In the notation of Sect.111.1.3, we recall the differential
equation (1.33) for the vectar= (u;) of grid valuesu; (t) = Y (z;, t):

= fI;lDK]:K’U/ + Vku

with the diagonal matrice® = ﬁ diag(k?) andVx = diag(V (z;)), wherek andj
range from— K /2 to K/2 — 1. With method (3.2), a time step is computed in a way that
alternates between pointwise operations and FFTs.

Algorithm 3.1 (Split-Step Fourier Method). The approximation at timé&* is overwrit-
ten by that at timeé”*! in the following substeps:

1. multiply: u; := e="2" V@, (j=—-K/2,...,K/2—1)

2. FFT: v := Fxu

3. multiply: uy := e AR/ @Gy, (k= —K/2,... K/2—1)
4. inverse FFT:u := Fr'lu

5. multiply: u; := e~ V@y,;  (j = —K/2,...,K/2—1).

The exponentials in Substep 5 and Substep 1 of the next tepecsin be combined into
a single exponential if the output at tine*! is not needed.

Unitarity, Symplecticity, Time-Reversibility. The Strang splitting has interesting struc-
ture-preserving properties. For self-adjdihandV, the exponentials—*4t ™ ande="3"V

are unitary (they preserve the norm) and symplectic (theggve the canonical symplec-
tic two-formw(&,7) = —2Im (¢ | n), see Theorem I1.1.2), and so does their composition.
The time-step operator of the Strang splitting is thus batiiany and symplectic. We
remark that neither holds for the Chebyshev method, whéhedsanczos method is uni-
tary, but symplectic only in the restriction to the Krylovtspace, which changes from
one time step to the next. Moreover, the Strang splittingnietreversible: a step of the
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method starting fromy™*! with negative step size At leads us back to the old,,, or
more formally, exchanging < n + 1 and At < — At in the method gives the same
method again. We note that neither the Chebyshev methodhadranczos method are
time-reversible.

[11.3.2 Error Bounds for the Strang Splitting
For bounded” andV, Taylor expansion of the exponentials readily shows
—i4t —i —i4t —i
e 5 Ve AtTe 3tV e At(T+V) + O(At3(HT|| + ”VH)B) )

However, such an error bound is of no use wiiear V' are of large norm. SincgT’|| ~
(Az)~2 (as in (2.15)), this error bound would indicate a small eamly for At < Az?,
whereas numerical experiments clearly indicate that thar @f the Strang splitting for
initial data of moderately bounded energy is bounded inddpetly of Ax for a given
At. For problems with smooth potential and smooth initial daterror is numerically
observed to b&(At?) uniformly in Az after one step of the method, a@tjt” At?) at
time¢™ aftern steps, uniformly im and Az.

In the following we present an error analysis from Jahnke &ich (2000), which
explains this favourable behaviour of the splitting methiddre we assume thdt and
V' are self-adjoint operators on a Hilbert spdgdeand? is positive semi-definite. We
require no bound fof’, but we assume a (moderate) bound/of

Vol <Bllvll Y eH. (3.3) [I11:split-V-bound]

We introduce the norms
el = (| T+ I|p)'/?
lollz = (o | (T + 1) | )2

which are the usual Sobolev norms in the casé&'et — A, and can be viewed as discrete
Sobolev norms in the spatially discrete case.

Our main assumptions concern the commutfol’] = TV — VT and the repeated
commutatof T, [T, V]]. We assume that there are constaftandc, such that the com-
mutator bounds

(34) [111:split-norns|

I, V]el < e llelh (35) |[I11:split-comn|
I T, [T, V]ell < cllel (36) |I11:split-come|

A

are satisfied for alp in a dense domain df. In the spatially continuous case with=
—Aand a potentidl (z) that is bounded together with its first- to fourth-order datives,
we see from the identities

A V] = AV e+2VV -Vop

[A AV = AV +AVAV -Vo+4 > 0,0V 9,010
7,0
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that the commutator bounds (3.5)—(3.6) are indeed validspatial discretization by the
Fourier method, it is shown by Jahnke & Lubich (2000) thastheommutator bounds
hold with constantg; andc, that are independent of the discretization parameter. We
then have the following second-order error bound.

hmsplit-error| Theorem 3.2 (Error Bound for the Strang Splitting). Under the above conditions, the

error of the splitting method (3.2) at= ¢" is bounded by

™ — ()| < C A2 t max lw(T)]lz2, (3.7) [1l1:split-error

whereC depends only on the boumtof (3.3) and oy, ¢ of (3.5)—(3.6).

Itis a noteworthy fact that the time discretization errotha splitting method depends
on thespatialregularity of the wave function, not on its temporal regiffaimhe proof is
done in the usual way by studying the local error of the me(tiuat is, the error after one
step) and the error propagation. For the local error we Hawéalowing bounds.

emsplit-Iocal | Lemma 3.3 (Local Error). (a) Under conditions (3.3) and (3.5),

Hefi%VefiAtTefi%V(p_ efiAt(TJrV)SDH < At2 H(th (3.8)

whereC depends only on; and .
(b) Under conditions (3.3) and (3.5)—(3.6),

He—i%ve—iAtTe—i%Vso _ e—iAt(T-Q—V)(p” <Oy A3 H<PH27 (3.9)
whereC depends only ony, ¢ and .

The local error bound (3.9) together with the telescopingifda

n—1
W= (") = S0 — B0 =Y ST S~ E) My, (3.10)
j=0

with § = 712"V iAT—i%'V and E = ¢~ *AUT+V) immediately yields the error
bound of Theorem 3.2. It thus remains to prove the lemma. &kilidea of the following
proof is the reduction of the local error to quadrature exror

Proof. (a) We start from the variation-of-constants formula
At
e—iAt(T-s—V)SO _ e—iAtTSD . z/ e—isTVe—i(At—s)(T—i-V)(pdS .
0
Expressing the last term under the integral once more byaime $ormula yields

At
e—iAt(T-ﬁ-V)(p — AT, Z/ e—isTVe—i(At—s)T(pdS + Rip,
0
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where the remainder

At At—s
Ry = _/ esTv/ e—iaTVe—i(At—s—U)(T+V) do ds
0 0

is bounded in the operator norm | < %Atzﬁz. On the other hand, using the
exponential series fari2"V leads to

e~V i AT —i 5t VSD _ e—iAtTSD _ %At(ve—iAtT + e—iAtTV)SD + Rop,

where||Rz|| < %At%’? The basic observation is now that the second term is the-rap

zoidal rule approximation to the integral appearing for éixact solution, with the inte-
grandf(s) = —ie *TVe {4t=5)T, Consequently, the error is of the form
ef’i%vefiAtTef’i%Vw _ efiAt(TJrV)(p =d+r, (3.11) [e]

wherer = Ry — Ry collects the remainder terms and

1 At

d = §At(f(0)+f(At))— f(s)ds (3.12) [d]

0
1 1
- —At2/0 (% —9) f'(0At) db = %At3/0 (1 — 0)f" (0AL) do

is the error of the trapezoidal rule, written in first- and@sd-order Peano form. Since
f'(s) = —e T[T, V]e~"At=9)T, condition (3.5) yields the error bound (3.8).

(b) For the error bound (3.9), we ugé&(s) = ie T[T, [T, V]e A=5)T¢ and
condition (3.6) to bound

1
ld]l < 35 e2 A8 ell2 - (3.13)

It remains to study = Rov — Ryv. We have
At ) At—s ) ) _
Ry = _/ eflsTV/ e*ZJTVefz(Atfsfa')T do ds + R,
0 0

with || R || < CA#*33, and
R, = _% At2 (VQefiAtT i 2VefiAtTV_i_efiAtTV2) + Ry
with || Ry|| < CA#*3%. We thus obtain

r=d+T7, (3.14)

where7 = Ryp — Ry is bounded by||7|| < CAt 83 ||¢| and, with g(s,0) =
_67isTVefiaTvefi(Atfsfa)T(p’
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~ 1 At pAt—s
d= 3 At? (g(O, 0) + 2¢(0, At) + g(At, O)) - / / g(s,0)dods
o Jo

is the error of a quadrature formula that integrates conh&tizuetions exactly. Hence,

~ 0
|d|| < ¢ A (max == ’—i—max 99 > ,
do
where the maxima are taken over the triarigke s < At,0 < o < At — s. Since
) . . . , , ,
a_i(s’ U) _ ie—st[T7 V]G_ZUTVG_Z(At_S_U)T(p-FZ' e—stV'e—zUT[jﬂ7 V]e—z(At—s—a)T(p’

we obtain, using (3.5),

0
|52 < tcr-t et + e el

Similarly, [|0g/0c|| < B e |||, So that finally
ldl| < CA | -
Together with the above bounds foandd this yields the error bound (3.9). O

[11.3.3 Higher-Order Compositions

| : hi gher - order |

At

The Strang splittingS(At) = e~i%"Ve~i4tTe~i%"V yields a second-order method.
Higher-order methods can be obtained by a suitable coniposif steps of different
size of the basic method:

P = S(y,At) .. S(y At)y" (3.15)

with symmetrically arranged coefficients = v,41—; determined such that
S(1sAt) ... S(mAL) = e AT L O (AT + VD)

with an orderp > 2. Composition methods of this or similar type have been aevisy
Suzuki (1990) and Yoshida (1990), and improved methods ke been constructed,
e.g., by McLachlan (1995), Kahan & Li (1997), Blanes & Moa®@2), Sofroniou &
Spaletta (2005). We refer to Hairer, Lubich & Wanner (20@ct. V.3, and McLachlan
& Quispel (2002) for reviews of composition methods, forittarder theory, for their
coefficients, and for further references. For example, aelient method of ordey = 8
with s = 17 by Kahan & Li (1997) has the coefficients

v1 =77 = 0.13020248308889008087881763

Y2 =76 = 0.56116298177510838456196441
v3 = 115 = —0.38947496264484728640807860
Y4 =714 = 0.15884190655515560089621075
v5 = 113 = —0.39590389413323757733623154 (3.16) | eq: conp_or der 8a
Y6 =712 = 0.18453964097831570709183254
v7r =711 = 0.25837438768632204729397911
v8 =710 = 0.29501172360931029887096624

Y9 —0.60550853383003451169892108
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As with the basic Strang splitting method, the presence @fgps of | T|| in the error
bound would seem to make a step-size restrictisn<. Az? necessary, but indeed this
is not the case. Thalhammer (2008) proves high-order eandbs for such methods that
require no bound of". By a formidable extension of the approach in the proof oféFhe
rem 3.2, using-fold repeated commutator bounds and achieving a redutdigouadra-
ture errors, it is shown that in the spatially continuousocagh 7' = — A and a smooth
bounded potential, there igith-order error bound at= ¢"

0" — w0l < C APt max ()], 317)

with the pth-order Sobolev norm. It is to be expected that in the slhatisscretized case,
the required commutator bounds hold uniformlydn: so that the error bound becomes
uniform in the spatial discretization parameter.

[11.4 Integrators for Time-Dependent Hamiltonians
In contrast to the Chebyshev and Lanczos methods, splittigidnods extend directly to
the Schrodinger equation (0.1) with a time-dependentrpiaid/ (z, ¢).

Strang Splitting. For a time-dependent potentid(t) = V (-, ¢), a version of this method
reads

P = eIV mALT i S V") yn (4.1) |111:split-strang-t

The error analysis of Theorem 3.2 is straightforwardly esitd to the case of a time-
dependent bounded, smooth potential, where one stillmbtasecond-order error bound
(3.7), viz.,
n __ 2
lo™ =¥ (@)l < C A7t max lib(7)]]2-

Higher-Order Compositions. If we denoteS (¢, At) = =% V(AL —idtT (=it V(D)
then the composition method

P = St O AL s AL) L. S(ET + 01 AL, v At)y"

with ; = 0 andfy1 = 0, + v (fork = 1,...,s — 1) has the same formal ordgras
method (3.15) for all the methods proposed in the paperd alteve. It is to be expected
that the error analysis by Thalhammer (2008) can be extetodgdld the full-order error
bound (3.17) also in the case of smooth time-dependent fiaiten

Magnus Methods.This approach, which has its origin in work by Magnus (1954Es
an approximation to the solution of

by an exponential
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R 2

where suitable choices f@?” are, for example, the mid-point rule

At

0" = —iAtH(t" + 7) (4.3) [111:magnus-np]
or the method based on the two-stage Gaussian quadratireades:; ; = % + %
] 3
" = —% At (Hy + Hy) — \1/—2_ A [Hy, Hi] (4.4) [I11:magnus-gauss

with Hj = H(tn + CjAt) forj =1,2.

We refer to Iserles & Ngrsett (1999) and Iserles, MunthesK&darsett & Zanna
(2000) for the theory of Magnus-type methods BmundedH (t) (more precisely, for
At||H(t)|| — 0), and to Blanes, Casas & Ros (2000) for the construction fafiefit
high-order Magnus methods. Various interesting commufagé® fourth-order methods
for time-dependent Hamiltonians are given by Blanes & Mdx(00).

For the Schrodinger equation with(t) = T + V(t) for a (discretized) negative
LaplacianT’ and a smooth time-dependent potential, it is shown by Haak& Lubich
(2003) that the Magnus methods retain their full order ofvemgence (without bounds
of T entering the error bound) if the solution is sufficiently utay. The error analysis
again uses commutator bounds similar to (3.5) and (3.6)attiqular, the methods (4.3)
and (4.4) are of temporal orders 2 and 4, respectively, umifowith respect to the space
discretization. The error boundstat t™ are

n 2
[ = ()] < C AP ¢ max, [1é(7)]
for method (4.3), and
n o __ 4
le —w(e)] < C At* ¢ max, 26(r)]lx

with & = 7 for method (4.4). In the spatially discretized case thisriorps tok = 3 if
At ||T/2|| < €, which amounts to a mild step size restrictidn = O(Ax).

In a practical implementation, the matrix exponential sraevector in (4.2) is approx-
imated by the Chebyshev or Lanczos method, which only requfre action of2” on
vectors, or once again by splitting methods.
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Chapter IV.
Numerical Methods for Non-Linear Reduced
Models

In this chapter we turn to numerical methods for non-lineatuced models that result
from a variational approximation as considered in ChagteWe first study the space
discretization within the variational framework, which aumts to a further reduction of
the approximation manifold in the Dirac—Frenkel time-degent variational principle
to a finite-dimensional manifold defined in terms of fixed bdsinctions. For time dis-
cretization, we discuss a splitting approach that appliextly to the formulation via the
Dirac—Frenkel variational principle rather than the egquet of motion of the particular
model. We first give an abstract formulation of the variadilogplitting method and then
apply it to multi-configuration time-dependent Hartree (MZH) and Gaussian wave-
packet dynamics.

The general approach in this section is to stay within théatianal framework as
far as possible, and to commit variational crimes only affithed stages, e.g., in actually
computing integrals for the matrix elements and in spetiztstepping methods, where
the effect of the non-variational perturbations can be migally controlled.

IV.1 Variational Space Discretization

Variational approximation methods such as the time-depetidartree method or its mul-
ticonfiguration version leave us with nonlinear partiafetiéntial equations, which still
need to be discretized in space. Rather than choosing adrhecdiscretization of the
equations of motion, we here consider using once again th@cBFrenkel variational
approximation principle to arrive at the spatially disazetl equations.

IV.1.1 Abstract Formulation

We return to the abstract setting of Section 1.1 and comsidgéchrdodinger equation on
a complex Hilbert spacg( with inner product-|-), with a HamiltonianH that is a self-
adjoint linear operator oft,

dy 1

F EHw. (1.1) |1V:schroed-eq

Let M, a submanifold of{, be the approximation manifold on which an approximate
solutionu(t) to the solutiony(t) of (1.1) with initial datau(0) = (0) € M is sought.
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The time derivative to the approximate wave functign) € M is determined from the
Dirac—Frenkel variational principle (11.1.2), viz.,
du

— €T.M suchthat < ‘———H>:O Voe LM, (1.2

where7, M is the tangent space atc M, henceforth assumed to be complex linear and
to haveu € T, M.

We now consider a family of finite-dimensional manifoldg,, < M with a dis-
cretization parametdk’, which approximateV asK — oo ':

Foreveryu € M, infy, emy |lwg —u|| = 0 as K — oo. (1.3)

We then discretize (1.2) by using the variational approxiomeon M g : find an approxi-
mate wave functiom g (t) € Mg with
duK

K T, Mg suchthat <UK‘d“K 1
1

I hHuK>=0 VUKE%KMK

(L) [VeaarK]

We exemplify this procedure in the Hartree model and theurmeto study the error
uk (t) — u(t) in the abstract setting.

IV.1.2 Space Discretization of the Hartree and MCTDH Equatbns

Time-Dependent Hartree Approximation.We recall from Sect. 11.3.1 that in the Hartree
method the approximations are chosen as Hartree produstaglé-particle functions,
which lie in

M={uel?R™):u#0,u=ap1® - Qpn, a€C, ¢, € L*(R")}. (1.5) [IV:hartree-nf

We now approximate each single-paricle functipn by a finite linear combination of
basis functionsggcn) € L%*(R%), which in the following we assume orthonormal for ease
of presentation, for example, tensor products of Hermitefions as in Sect. lll.1. We
denote

V%L) :spar(x,(cn) k=1,...,K),

where for simplicity we choos& independent ofi. We thus have the finite-dimensional
approximation manifold

(N), a€C, cp([?) GV%)}.

(1.6) [1V:hartree-nf-K
Retracing the derivation of the Hartree equations of motown to (11.3.9), we now
arrive at

MK:{uKELQ(RBN):uK;AO uK—a<p()® ‘® Py

(n)
&’l> - <a<pg)®-~-®19§?) ®tpN)‘—HuK> (1.7) [1V:hartree- weak- eom

(| =50

1 n n n n
—<uK‘ELHuK><19(K)|<p(K ) Vﬁ%) GV%),
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where simply the spacg? has been replaced by the finite-dimensional approximation
spacevgl). Writing
K
o5 @ t) = > " ()X, (@),
k=1
this yields the following system of ordinary differentiawations for the coefficients (as
in (11.3.12), we ignore a phase term):

d (n) K

i S 5 (0 | 3y o) a9

=1

with the mean-field Hamiltonian
H® = () [ H )™ with o = Qe
J#n
where theL? inner product on the right-hand side is over all variablesegxz,, . We note
that equations (1.8) are just a Galerkin discretizatiormeftiartree equations (11.3.12).

MCTDH Approximation. Conceptually the same is done for the MCTDH method. Drop-
ping the discretization paramet&rin the notation, we approximate by a linear combina-
tion of Hartree products,

u(zy,...,zN,t) ~ ZaJ(t) cpg-})(xl,t) Co -gogg)(x]v,t)
J

with the sum over multi-indices = (41, ..., j~), where now each single-particle func-

tion tplgz) is a finite linear combination of basis functions:

P (@, t) = D (1) () () -

By the arguments of Sect. 11.3.3, we find that the coefficieatisfy differential equations
which, in the notation of Theorem 11.3.4, read

daJ

Zhﬁ - Z<¢J|H|¢I>a17 J:(jla"'ajN)a
I
defy AR (n) | 4 () (n) ()
ih 8Jt - ZZZ(P(M);; (X | Hyg | X3 ) “p
k=1 i=1 =1
Tn Tn Tn K K -
-3 (P 5k ey O L HG X ey
k=1 l=1 m=18=1~=1
j=1...,rp,n=1,....N,a=1,..., K,

where we have the mean-field operat;bfg) = <w,(€") | H | wl(")>(ﬂ”> with the single-
hole functionswlgn) of (11.3.33).
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IV.1.3 Discretization Error

We study the erroffuk (t) — u(t)|| under the assumptions of Sect. 1.6 for the manifolds
M, with constants that are uniform ili. These assumptions can be verified, e.g., for
variational Hermite or Fourier discretizations of the Heetand MCTDH models. We let
againh = 1 in this subsection. The Hamiltonidd is split as

H=A+B (1.9)
with self-adjoint linear operatord and B whereB is bounded,
|Boll < Bllell  forall ¢e™, (1.10)
and A is tangential onM g :
Aug € Ty Mk forall ux € Mkg. (1.11)
The orthogonal projectoBx (ux ) onto 7, , Mk andPI% (ur) = I — Pk (uk) satisfy
I (Pr(ux) — Pe(wi))ell < & lux — vk - [l (1.12) [1V:kappa- 1
I PI%(UK)(UK —vg) || < Kllug —vk|? (2.13) |1V: kappa-2

forall ug,vg € Mg andy € H. We further assume

distu(r) M) < 5 for 0<t<F, (1.14)
K

which is satisfied for sufficiently larg& under the approximation condition (1.3). We
require the bounds

IHu@®)| < p, |Hug@)| <p and [Aug(t)] < p. (1.15)
Further we consider the distance bound 1 given by
dist (Hu(t), Ty, (M) < 6, dist (Hug (t), To,eyM) < 6, (1.16)
wherevg (t) € Mg is the best approximation t(t) on M
dg (t) = dist (u(t), Mk) = |lvx (t) —u(?)| .

We then have the following extension of Theorem 11.6.1, vehete note in addition
Jug () = u(@)] < luk(t) = v (t)] + dx ().

V: t hm near - opt | Theorem 1.1 (Quasi-Optimality). Under conditions (1.9)—(1.16), the difference be-

tween the variational discretizatiomx (¢t) of (1.4) and the best approximatien (t) on
M is bounded by

luc(£) = vie (&) < € u (0) — v (0)]] + Ce™* / dic(s)ds  (1.17)

withy = 2kd andC' = 8 + 4kp, for0 <t <t.



IV.2 Variational Splitting: Abstract Formulation 109

Proof. The proof is almost identical to that of Theorem 11.6.1, wh@ow ux andu
assume the roles afandv, respectively. We compare the differential equationfgr,

) 1
UK = PK(UK)Z HUK y
with that for the best approximatian,, which in correspondence with (11.6.14) reads
O = Px(vig)i+r(vi,u)  with ||r(vi,u)|| < 25pdk .

Sinceu = P(u)% Hu, andPg (vk ) P(vk) = Pk (vk ) because oM C M, we obtain

. 1 1 1
Vg = PK(UK); Huvg — PK(vK)g H(vkg —u) + Px(vg)(P(u) — P(’UK)); Hu,
where the last term is bounded bydx . The proof then proceeds in the same way as that
of Theorem I1.6.1. O

For the Hartree or MCTDH model on a bounded interval in eactdioate direction
and with periodic boundary conditions, Theorem 1.1 can feel is show that the vari-
ational Fourier discretization witk Fourier modes in each coordinate satisfies an error
bound

lure (8) —u(®)ll < C) K~ max lu(7)l|a-

if the Hartree or MCTDH wave function is in the periodic Sobolev space of ordert

is to be expected that this estimate can be extended to threeFoallocation method via
the interpretation of collocation as a Galerkin method wjittadrature approximation of
the matrix elements.

I\V.2 Variational Splitting: Abstract Formulation

Splitting methods were found to be useful as time integmatisethods for the linear
Schradinger equation (Sect. I11.3). Here, they are extelrtd variational approximations.

IV.2.1 Splitting the Variational Equation

Suppose that
H=T+V (2.1)

and that the variational equations (1.2) wittandV’ instead ofH are easier to solve than
that for the full Hamiltoniar . Then, the following splitting approach appears promising
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IV:al g:vsplit]| Algorithm2.1 (Variational Splitting). A time step fromu" € M to the new approxi-

mationu™t! € M attimet™+! = " + At is done as follows.

1. Half-step withV: Determineu’; € M as the solution at time\z/2 of the equation
for u,

du du 1 ,
eTM suchthat (v| - —Vu)=0 VeeTM, (22

with initial valuew(0) = u™ € M.
2. Full step withT": Determineu""" as the solution at time\¢ of

Wezm suhthat (o] 2 - Lru)—0 voeTM, (29

with initial valueu(0) = .
3. Half-step withV : Finally, u™ ! is the solution at time\t /2 of (2.2) with initial value
u(0) = u™t

This method was put forward in Lubich (2004) as a numericegrator for the
MCTDH approximation. We note that fov1 = H this is just the Strang splitting (111.3.2).
When we compose steps of different length by this method &sation 111.3.3, we again
obtain higher-order methods (at least formally).

Norm Preservation, Symplecticity, Time Reversibility. The above method is a sym-
metric composition of exact flows that preserve norm and $gatigity according to
Section II.1. Disregarding additional numerical errorattmay result from an inexact
solution of the differential equations (2.2) and (2.3), thapu™ — u"t! is therefore
norm-preserving, symplectic, and time-reversible.

IV.2.2 Error Analysis

We give a non-linear extension of the error analysis of Taeolil.3.2 to derive a second-
order error bound. In this subsection wefiet 1 for convenience.

Assumptions.Our assumptions are similar to those of Sect. 11.6. We camnslek situation
that the approximation manifoltH is such that solutions of the free Schrodinger equation
starting onM remain onM:

e TyeM for ueM,teR.
This is satisfied for all the reduced models of Chapter Il. Aniealent condition is
TueT,M for ue MND(T). (2.9

We assume a bound dn:

Vel <Blel  VoeH. (2.5)
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We assume that the manifold has bounded curvature: thegmttab projectionsP (u) :
H — T, M andP+(u) = I — P(u) satisfy (11.6.5)—(11.6.6), viz.,

[ (P(u) = P))pll < rsllu—ol el (2.6) |IV:kappal
| Pr()(u—v)|| < &|u—o|? (2.7) |1V: kappa2

for all u,v € M andy € H. In addition we need non-linear versions of the commutator
bounds (111.3.5)—(111.3.6). For their formulation we nexintroduce some more notation.

Vector Fields and Flows onM. The exact solution of (1.2) is

u(t) = ¢ (u’)
whereg!; is theflow map of the differential equation o,

~ . ~ 1
U= H(u) with  H(u) = P(u)=Hu.
1
that is,¢%; (v) € M is the solution at time of this differential equation with initial value

u(0) = v € M. A step of the splitting algorithm reads, in similar notatjo

= 6 e G @9)

whereg!, is the flow onM of

u=Vw) with V(u) = P(u)=Vu,

andgl. = e~ T is the flow onM of

w="T(u)  with T(u)= P(u)lTu ~1py,
(3 (3

The last equality holds by condition (2.4).

Lie-Commutator Bounds. We require bounds on the Lie commutator of the vector fields
T andV on M, given by

~ ~ 1~ ~ 1
[T, V](u) = zTV(u) — V'(u);Tu
with the directional derivative

= 1 d
V' (u)=Tu = —
(u)z T t=0
A further estimate is needed for the iterated commutgtof7’, V]]. We assume non-
linear versions of the bounds (I11.3.5)—(l11.3.6):

II[T Vi@l < ellul (2.9)
I (T, V@I < ealull2 (2.10)

with constantg;, ¢o independent of. € M N D(T'). Here, the Sobolev-type norms with
subscriptsl and2 are again those defined by (111.3.4). These conditions iddes out
to be satisfied for the Hartree method and its multi-confitjomasersions in the case of a
smooth bounded potential; see Lubich (2004).

V(etT/iu).
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Error Bound for the Variational Splitting. Following Lubich (2004), we obtain a
second-order error bound of the type of Theorem I11.3.2.

hmsplit-error | Theorem2.2 (Error Bound). Under conditions (2.4)—(2.10), the error of the variatibna

splitting method is bounded &at= ¢" by

n __ 2
Ja" — u(®)] < C(0) A max, u(r)]l2

whereC(t) depends only of, ¢, ¢2, &, andt.

The proof is done in the usual pattern by combining estimatdbe local error and a
stability estimate.

IV-lemloc-err | Lemma 2.3 (Local Error). In the situation of Theorem 2.2, the error after one step is

bounded by
2
lu' —u(At)| < Cy At o Joax, [l (7)1 (2.11) |loc-errl
3
lut — u(At)| < Cy At onax, lu(T)|l2, (2.12) |loc-err2

whereC; andCs depend only o, ¢1, cs.

IV-lemstab|] Lemma 2.4 (Stability).Letu! andv' be the numerical solutions after one step starting
fromu® € M andv® € M, resp., withu® and+? of unit norm and|u® — v°| < cAt.

Then, their difference is bounded by

Jut = vt < €4t |ul — o] (2.13)
with v = kd + O(At), wheres = dist(V v, 7,0 M).

If we denote a step of the variational splitting methodWy™! = Sa.(u"), then
the error accumulation formula (Lady Windermere’s Fan;ldager, Ngrsett & Wanner
(1993), Sect. I1.3)

n—1

ut —u(t") =Y (SZ?H (Sar(u(t’)) - Szt_l_j((u(tj*l)))

Jj=0

together with Lemmas 2.3 and 2.4 yield Theorem 2.2 wWitft) = (e’ — 1)/+. We
remark that the exponentis essentially the same as the exponentin Theorem I1.6.1.
It remains to prove the two lemmas.
The local error bound of Lemma 2.3 is proved by transferirgdtguments of the
proof of Lemma I11.3.3 to the present non-linear settingtii@calculus of Lie derivatives,
which we describe next.

Calculus of Lie Derivatives. (Cf., e.g., Hairer, Lubich & Wanner (2006), Sect. 111.5, or
Hundsdorfer & Verwer (2003), Sect. IV.1.4. This formalismiyprelies on the differen-
tiability and the semi-group property of the flow, and so iafplicable in the infinite-
dimensional setting as well as in the finite-dimensionaédas
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For a vector fieldF" on M, which tou € M associateg'(u) € 7, M, such asT’
orVorH =T+ V, we denote byst. the flow at timet of the differential equation
@ = F(u) on M, that is,¢%(v) is the solution at time with initial valueu(0) = v. The
Lie derivativeDrG atv € M of another vector fields on M is defined by

(DrG) ) = | G(6h(0) = G'(W)F(0)

We use the notation
(exp(tDR)G) (v) = G(6f(v).

In particular, for the identityfd, the flow is reproduced asp(t Dp)Id(v) = ¢4 (v). We
then have the following properties:

% exp(tDp)G(v) = (exp(tDF)DFG) (v) = (DF exp(tDF)G) (v).

The first equality follows directly from the definition. Themnd equality uses that
F(¢h(v)) = (¢%) (v)F(v), which is obtained by observing that the differer¢e) =
F(¢t(v)) - (¢%)' (v) F(v) satisfies the linear differential equatidft) = F' (4t (v))d(t)
with §(0) = 0.

The commutatofDr, Dg| = DrDe — DeDr of the Lie derivatives of two vector
fields F andG is the Lie derivative of the Lie commutatf#, F] = G'F — F'G of the
vector fields in reversed order,

[Dr, Dc] = Dig, p).-

This is seen by a direct calculation in which second defrestcancel.

Proof of Lemma 2.3.For notational simplicity we writeDy, Dz, Dy instead ofD g,
Dz, Dy, respectively. We start from the nonlinear variation-ofistants formula

u(At) = exp(At Dy)Id(u®) = exp(At Dr)Id(u’) +
At
/ exp((At — 8)Dy) Dy exp(sDr)Id(u) ds.
0
Using this formula once more for the expression under theginat, we obtain
u(At) = exp(At Dp)Id(u®) +

At
/ exp((At — 8)Dr) Dy exp(sD7)Id(u®) ds + 7
0
with the remainder

At pAt—s
= / / exp((At — s — 0) Dy ) Dy exp(o0 D7) Dy exp(sDp)Id(u®) do ds |
o Jo
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which is bounded by> At* with a constanC' depending only on the boundl of the
potentiall”. On the other hand, the numerical solution reads in thistioota

ul = exp(%AtDV) exp(AtDr) exp(%AtDV)Id(uo) .

Taylor expansiorxp(5tDy) = I + §:Dy + (%)Qfol(l — 0) exp(05t Dy ) D} db
gives

u' = exp(AtD)Id(u®) + % (exp(AtDr)Dy + Dy exp(AtDr))1d(u®) + 72

with the remainder, bounded byC'At?, again with a constard’ depending only or.
The error now becomes

u' —u(At) = % (exp(AtDr)Dy + Dy exp(AtDr))Id(u?)
At
- /0 exp((At — 8)Dr) Dy exp(sDp)Id(u®) ds + (ro — 1),

and hence the principal error term is just the quadratuig efrthe trapezoidal rule ap-
plied to the integral oveld, At] of the function

f(s) = exp((At — s)D7) Dy exp(sDp)Id(u®).

We express the quadrature error in first- and second-orderderm,

At

3 40 (FO) +7(a0) = | f(s)ds

1 1
——A2 [ o0 reands =LA | o(1—6)F"(0A1)ds.
¢ [ G-oreana =5 a [ oa-orea
Since

exp((At — 8)Dr) [Dr, Dy] exp(sDr)Id(u)
—exp((At — s)Dr) Dz v exp(sDr)Id(u)

= _emwsT [j'\" ‘7] e—i(At—s)TuO 7

f'(s)

the commutator bound (2.9) shows that the quadrature erbmtinded by c; A#?(|u°||;.
This proves the first error bound of Lemma 2.3. To obtain tlvesd bound we use simi-
larly

f"(s) = exp((At —s)Dr)[Dr,[Dr, Dy]] exp(sDp)Id(u®)

— e #sT [f7 [f7 ‘7]] e—i(At—s)TuO 7
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and hence (2.10) shows that the quadrature error is bourydggth At” [|u°||. A closer
look at the remainder term = r, — r; yields, as in the proof of Lemma 111.3.3, that
r is itself a quadrature error of a first-order two-dimenslaneadrature formula for the
integral over the trianglé < s < At, 0 < ¢ < At — s of the function

g(s,0) = exp((At — s — 0)Dr) Dy exp(o D7) Dy exp(sDr)Id(u®) ,

plus anO(At*) remainder term. The quadrature erroriis bounded by At® times the
norms of the partial derivatives with respecttande of g, which turn out to be bounded
as needed. O

Proof of Lemma 2.4.The stability estimate is obtained from (2.8) by observingtt
e~ AT s unitary and by showing that

oy (u®) — ¢y ()] < e [lu® =27

with v as stated in the lemma. This bound is shown as follows: Weew(it) = ¢!, (u)
andv(t) = ¢t,(v°). Notingu = P(u)u andv = P(v)v, we have

i —0=—iP(u)VP(u)(u—v) —i(P(u)VP(u) — P(v)VP(v))v.

Forming the inner product with — v and taking the real part, we obtain

=

|
=

| =
=

|
=

|

Re(u —v|u— )

= Re(u—v| —i(P(w)VP(u)— Pv)VP())v)
= Im{u—v|Pu)V(P(u) - P(v))v)
+Im(u—v|(P(u) — P(v))P(v)
+Im (u—v| (P(u)
I+1T+111.

Since
(P(u) — P(v))v = —(P+(u) = P (v))v = =P (u)v = P (u)(u —v),

the bound (2.7) gives us
1] < Bk [lu = o|°.
For 11 we note
(u—v|(P(u) — P(v))P(v)Vv) = —(u—v| (P+(u) — P=(v))P(v)Vv)
=—(u—v] Pl(u)P(v)Vv> = —<Pl(u)(u — )| Pl(u)P(v)Vv>
= (P (u)(u—v) | (P(u) — P(v))P(v)Vv),

and hence (2.6)—(2.7) yield
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[11] < Bk [lu =

Finally, since
| P+ (v)Vo|| = dist(Vo, T,M) = § + O(At),

we have from (2.6)
11T < k(6 + O(AL)) |lu—v||?.

Hence, as long dgu — v|| = O(At), we obtain
d
=]l < (k6 + O(AD) u— ]|,

which yields the stated result. O

I\V.3 Variational Splitting for MCTDH

We consider the Schrodinger equation for the nuclei obthfrom the Born—Oppenheiner
approximation,

zh%—i} = Hip, H=T+V (3.1) [1V:schrod-nuc-V
with the kinetic energy operatar = — Zﬁ;l % A, and apotentiaV (z1,...,zN),

which we assume bounded and smooth for all theoreticalstates made in this section.
We recall the MCTDH method of Sect. 11.3.3, which gives theational approxima-

tion on the manifold\ of (3.40). The approximation is by linear combinations ofsier

products of single-particle functions satisfying the oghnality relations (11.3.31),

=Yoo opl, @2)
J

where the sum is over multi-indiceé = (j1,...,jn5) for j, = 1,...,r, andn =
1,...,N.

The variational splitting method for the MCTDH model turng to yield an explicit
time integration method that is unconditonally stable wékpect to the space discretiza-
tion parameterAz. As an interesting alternative to the variational splgtimethod for
integrating the MCTDH equations, we refer to the constaaémfield multiple time-
stepping method by Beck & Meyer (1997) where, however, thexorsteps are required
of sizeO(Ax?) for stability.

Step with the Kinetic Energy. SinceT'v € T, M foru € M N D(T), the step (2.3) with
T actually solves the free Schrddinger equation

. Ou
zhE—Tu.

For an initial function in the multi-configuration form (3,2his completely decouples
into single-particle free Schrodinger equatiodis; /d¢t = 0 for all J and
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dpt™ h?

. In_ __ _ (n) - Qi -

ih 5t = I Ay, 0" (3.3) |IV:single-free
forj,=1,...,r,andn =1,..., N. These equations are solved efficiently, e.g., by FFT

diagonalization of the Laplacian in the Fourier method dftfea 111.1.3. We note that the
solutions of (3.3) preserve the orthogonality (3.31) ofshmgle-particle functions.

Step with the Potential. Solving (2.2) means solving the MCTDH equations (11.3.41)—
(11.3.42) with only the potential’ instead of the full Hamiltoniat?:

. da, . .
ih—=l = D (s |V|Px) . VJ = (1, 0n), (3.4)
K
. 8@(71) Tn Tm - . o .
kn=11,=1

n=1....rp, n=1,...,N,

where we refer back to Theorem I1.3.4 for the notation. Thedaable situation compared

with the full MCTDH equations is that no differential opesatppears in the equations.
Therefore, with an explicit integrator the step size can be chosen independent of the
spatial grid sizeAx. For the further discussion we collect all coefficientsiin= (as)

and all single-particle functions ip = (<p(")) and abbreviate the differential equations

(3.4)~(3.5) as o

iha=Av(p)a

ihé = (I — P(9) By (a.0) 0. (3.6) |IV: nct dh- eqgs- V

HereAy () is the Galerkin matrix with entrie® ; | V' | @i ), which are high-dimensional
integrals that need to be computed approximately; see BEuakle, Worth & Meyer

(2000) for various techniques employed in their MCTDH co8idnighly successful ap-

proach is to approximate the potential by linear combimetiof tensor products as in
(11.3.13), for which the integrals reduce to products of {dimnensional integrals. In the
second equatior? = blockdiag P(*)) is the orthogonal projection anféh contains the

density matricep(™ and the mean-field operators, which are formed by the inre-pr
ucts Wz(c:) |V wl(:))(ﬁm with the single-hole functions. The computation of the nxatr
elements is the computationally most expensive part of thénad.

Time Integration Scheme.For the numerical solution of the differential equation$}3
we consider a multiple time-stepping approach for the redddCTDH equations (3.6), a
variant of theconstant mean-fieldpproximation of Beck & Meyer (1997) proposed there
for the full MCTDH equations. This approach is motivated hg bbservation that the
single-particle functiong often change faster than the Galerkin matrix and the me#h-fie
operators, whose computation is the most expensive panedhtegration. We consider
the following algorithm for integrating the reduced MCTDHuations (3.6).
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Algorithm 3.1 (Constant Mean-Field Method for the Potentid Partin MCTDH).
A time step of lengti\¢ for the differential equations (3.6) proceeds as follows.

1. ComputeBy, = By (a, ¢") (thatis, the density and mean-field matricega, "))

and solve
o= (I~ P(g) BY ¢ (3.7)

with initial value(0) = ¢° over half a time stef0,  At] and setp'/2 = (3 At).
2. Compute the Galerkin matrit;/* = Ay (¢!/2) and

. 1/2
ol = e—iAtAY? /R 0

3. Determine the predictog’ as the solution of (3.7) at\t and computeB], =
By (at, ). Solve
i = (I- P(9) Bl (38)
with initial valuep (3 At) = /2 over[3 At, At] and setp! = (At).

The differential equations fop in the first and third step are solved approximately by
v smaller time steps of lengthr = At/v. An orthogonality-preserving integrator is
favourably used here; see Hairer, Lubich & Wanner (20063t.$¢9.1, for various pos-
sibilities. The action of the matrix exponential in the sedatep is computed efficiently
with the Lanczos method of Sect. I11.2.2. There is no step ségtriction byD(Ax?) since
the Laplacian of the kinetic energy part has been taken othdyariational splitting.

IV.4 Variational Splitting for Gaussian Wave Packets

We consider the Schrodinger equation (11.4.1) in semssilzal scaling, viz.,

Oy &

2
ie - = Hy, H=H =-SA+V, (4.1) [1V:schrod-eps

with a small positive parameter We recall from Sect. 1.4 that the variational approxi-
mation of the wave function by a complex Gaussian (I1.4.2).,v

P, 1) ~ (1) = exp<§((z—g(t»Tc(t)<x—q<t>>+p<t>-<x—q<t>>+<(t>)), (4.2)

has equations of motion for the parameters that read, witteges W) (t) = (u(t) | W | u(?)),

5 = vy @)

for position and momentum and
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N 2 1,2 ;
¢ = —20°- (V*V) (4.4)
= WP (V) el S (i ((ImO)TVRY)) (4.5)

for the width matrix and phase.

Variational Splitting in Coordinates. The variational splitting method of Algorithm 2.1
applied to Gaussian wave-packet dynamics yields a cornelipg splitting in the differ-
ential equations for the parameters:

1. and 3.Half-step withV:

; : . e (4.6) |1V:gauss-split-ode-V]|
po= —(VV) (= —(V)+< (i (ImO)1v2V))
2. Full step withT™
| = C = -20?
? " : 4.7) | | V: gauss-split- 0de-T|
p =0 ¢ = %|p|2 +ietr C

Remarkably, these differential equations can all be sodxgticitly. We note thai, Im C,
and Im¢ remain constant in time in (4.6), and hence also the averaigés VV, and
V2V over the Gaussian. Denoting bf the Gaussian with parametey’s p°, C°, ¢° and
(V)0 = (u® | W |u®) for W = V, VV, V2V, the solution of (4.6) is thus given by

qt) = ¢° Cct) = C°—5(V?V)°
pt) = PP =t(VV)" | ) = O —t(V)°+ % (u ((ImC) 1 vEY))”
The solution to the differential equations (4.7) is obtdias

qt) = ¢"+1p° Ct) = C(I+2tC%)~!
p(t) = p Ct) = O+ L2+ Letr(log(l +2tC0)).

This yields the following numerical method from Faou & Lubi2006).

IV:al g: gwp| Algorithm 4.1 (Gaussian Wave-Packet Integrator).Starting from the Gaussian™
with parameterg™, p”, C™, (", atime step for (4.3)—(4.5) from tim@ to¢"+! = ¢" + At

proceeds as follows:
1. With the average§V)" = (u™ | W |u™) for W = V, VV, V2V, compute

PR =t = S (V)
R X\ *8)

A n
a o= - % (V)™ + 1—25 {(tr ((ImC™)~'V2V))".
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2. Compute
qn+l — qn _ Atpn+l/2
ottt = ORI +24t07) ! (4.9) |IV:gwp-al g-2
ntl ¢+ % ‘pn+1/2‘2 4 %Etr(log([ + 2At Ci)) .

3. With the averages over the Gaussian at titfie!, which are the same as those for
the previously computed parametefs, ", ¢"*!, compute

Pl = /2 = (Vy)rtl

crtl = ontl_ % (V2 tt (4.10) |IV: gwp-al g-3
At n

¢ =t = S 28 (o (im e Ry

We collect some properties of this algorithm.

I'V:thm gwp-int | Theorem 4.2 (Properties of the Gaussian Wave-Packet Integtor). Algorithm 4.1 is

an explicit, second-order numerical method for Gaussiavempacket dynamics. The
method is symplectic and time-reversible and preservesitiite.? norm of the wave
packetsu™. In the limite — 0, the position and momentum approximatiayis p™ of
this method tend to those obtained by applying ttierser—\Verlet method (1.3.5) to the
associated classical mechanical system (1.1.1).

Proof. The statement for — 0 follows directly from the equations fqr**+1/2, ¢"+1,
p" Tt and from noting(VV')* — V'V (¢™). The other properties have already been veri-
fied for variational splitting methods (Algorithm 2.1) inmgeral. O

The method does not preserve the total energy exactly, bsitsitown by Faou &
Lubich (2006) that the energy.™ | H | u™) along the numerical solution deviates from
the initial energy only by?(At?) over exponentially long times < e¢/4*, uniformly
in €. The proof uses the symplecticity of the method, in the fofrthe preservation of
the Poisson structure (see Sect. 11.4.2) by the one-stefondépe parameters.

In view of the small parameter, the discussion of the order of the method re-
quires some care. Here it is useful to consider the integiatdhe scaled variables
y = (p,q,ReC,ImC/e,Re(,Im(/¢e). Since the equations of motion in the scaled vari-
ables turn out to contain only as a regular perturbation parameter, aftesteps of the
splitting integrator we have theuniform error bound

gt = ytt) = O(A?),

where the constants symbolized by thenotation are independent efand ofrn. and At
with nAt < Const. For the absolute values of the Gaussian wave packets this e
error bound
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la™? = Ju@)*]| = O(Ar), (4.11)
but the approximation of the phases is only
lu™ — u(t™)|| = O(At?/e). (4.12)

We refer to Faou & Lubich (2006) for more details, for the falation of the algorithm
for spherical wave packets (diagonal complex width matf)xand for numerical exper-
iments that illustrate the stated properties.
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Chapter V.
Semi-Classical Dynamics Using Hagedorn Wave
Packets

chap: hagwp

V.1 Hagedorn’s Parametrization of Gaussian Wave
Packets

In Sect. 1.4 we considered Gaussian wave packets written as

e, t) = exp( 2 (3l = )T COw () +500) (o = al0) + ) ),

with a d-dimensional complex symmetric matriX(¢) with positive definite imaginary
part. It was noticed by Hagedorn (1980) and further devalapesubsequent papers,
notably in Hagedorn (1998), that much insight and imporéténsions can be obtained
from factorizingC/(t) into two complex matrices with special properties.

A Matrix Factorization. A key to the further developmentis the following matrix lemm
see Hagedorn (1998), Sect. 3. Here, the supersEriggnotes the transpose of a matrix
and the superscriptdenotes the transpose and complex conjudasgthed-dimensional
identity matrix. (The matrice® and P in the lemma correspond tdé and:B in Hage-
dorn’s papers.)

V: | em hag-rel | Lemma 1.1. Let@ and P be complex! x d matrices that satisfy the relations

QTP - PTQ =0

Q*P — P*Q = 2iI (1.1)

Then,@ and P are invertible, and
C=PQ!
is complex symmetric with the positive definite imaginamt pa

ImC = (QQR*)™". (1.2)

Conversely, every complex symmetric matfiwith positive definite imaginary part can
be written asC' = PQ~! with matrices and P satisfying (1.1).
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Proof. Multiplying the second equation of (1.1) from the left and tight with a vector
v € C?yields

(Qu)* (Pv) — (Pv)*(Qu) = 2i||v]|,
which shows thav = 0 is the only vector in the null-space 6§ or P. Hence, these

matrices are invertible. Multiplying the first equation af1) from the left with(Q—1)”
and from the right withQ ! gives

PQT = (@7)TPT =0

and thus shows th&t = PQ~ is complex symmetric. Further, we have

(IMO)QQ) = 1 (PQ™" — (Q7) P)QQ" = . (PQ" — (@) (P*Q)Q").

which simplifies to the identity on using the second equatibifl.1) for substituting
P*Q =Q*P — 2il.

Conversely, for a complex symmetric mattixwith positive definite imaginary part
we setQ = (ImC)~Y/2 andP = CQ. Itis readily verified that these matrices satisfy the
relations (1.1). O

The factorization is not unique, since multiplyiigg and P from the right with a
unitary matrix preserves the relations (1.1).

Relationship with Symplectic Matrices. A real matrixyY € R24>*2¢ js symplectidf it
satisfies the quadratic relation

T o . _ O _I .
Y JY =J with J= <I 0] (2.3) |V:synp
If we set, for complex matriceg, P € C?*¢,

~ (Re@Q Im@Q
Y_(ReP ImP)’

then the relations (1.1) are equivalent to the symplegtadndition (1.3). We shall there-
fore refer to (1.1) as theymplecticity relationgor @ and P.

Complex Gaussians in Hagedorn’s ParametrizationConsider a normalized-dimen-
sional Gaussian

#31a.p. Q. Pl(x) = () ™4(det Q) exp( 5 (2= ) PQ7 (@ = )+ 2p" (2 —0))
@4
with ¢,p € R¢ and matricesQ, P € C*¢ satisfying (1.1). This function is of unit
L? norm since a diagonalization of Q' shows that it should have the factor
|det(Im PQ~1)~1|~1/4, and by (1.2),det(Im PQ~1)~|~/* = |det(QQ*)|~/* =
| det Q|~1/2. It turns out favourable to takelet Q) ~'/2 without the absolute value, where
the branch of the square root is chosen suitably, in pagticuch thatdet Q(t))~'/2 is
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a continuous function of for a continuous family of invertible matrice3(t). We write
o instead ofp5[q, p, @, P] when the parameters are clear from the context.

Gaussian Wave Packets and Quadratic HamiltoniansWe know from Sect. Il.4 that
Gaussian wave packets with appropriately evolving paramsaire exact solutions to
time-dependent Schrodinger equations

Loy e :
iemr =~ A+ VY (1.5)

in the case of auadraticpotentialV. This fact underlies the approximation result for
more general smooth potentidls see Theorem I1.4.4. It turns out that the equations of
motion assume a particularly appealing form with Hagedoparametrization.

We consider the classical equations of motion associatdd(Wi5),

. p
q=—
m 19)
p=-VV(g)
and their linearization along@(t), p(t)),
oL
o a.7)
P=-VV(9)Q

with the HessiarW2V (q). Further, we consider the classical action integral

S(t) = /O (M_V(q(s)))ds. (1.8)

2m

Then, there is the following basic result from Hagedorn (1,98998).

V: t hm gwp- quad | Theorem 1.2 (Gaussian Wave Packets in a Quadratic PotentjaletV be a quadratic

potential, and let(q(t), p(t), Q(¢), P(¢)) for 0 < ¢ < t be a solution of the classical
equations (1.6)—(1.7) and(t) the corresponding action (1.8). Assume tlgx) and
P(0) satisfy the relations (1.1). The@,(t) and P(t) satisfy (1.1) for all timeg, and

la,t) = €50/ i lq(t), p(t), Q). P(1))(x) (1.9

is a solution of the time-dependent Satlinger equation (1.5).

Proof. The fact that relation (1.1) is preserved under (1.7), isresequence of the lemma
below (or of the symplecticity of the flow of the Hamiltoniagssem (1.6)). A direct,
lengthy calculation shows that (1.9) is a solution of ther8dimger equation (1.5). Here
it is useful to note thag (det Q) = tr(QQR 1) = L tr(PQ™Y). O

~m
Remark 1.3. The theorem remains valid also in the case of a time-depé¢ngeaalratic

potentialV (z, t), in particular, for the local quadratic approximation tox@o®th potential
along a classical trajectory.
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Lemma 1.4. Suppose thaD(t), P(t) € C**9 satisfy the differential equations

Q) = F@)P()
P(t) = GH)Q()

with real symmetric matrices’(¢), G(t). If the relations (1.1) hold at = 0, then they
hold for all ¢.

Proof. We have

d . .o .

E(Q*P—P*Q) = Q*"P+Q*P-P*Q—-P*Q = P*FP+Q*GQ—-Q*GQ—P*FP =0
and in the same way, (Q”P — PTQ) = 0. O

Fourier Transform. Hagedorn’s parametrization of Gaussians has further egutop-
erties. We mention that the scaled Fourier transform

Fap(€) = (2me) /2 / o(€) e €/ dg

Rd

of the Gaussiagyj is given by the formula

Fegila.p, Q. PI(&) = e P05 [p, —q, P, —Q)(£) ; (1.10)

see Hagedorn (1998), formula (3.19).

V.2 Hagedorn’s Semi-Classical Wave Packets

Following Hagedorn (1998), we construct parameter-dependrthonormall?(R?)
bases of multi-variate polynomials times Gaussians, whiske very favourable propaga-
tion properties in the time-dependent Schrodinger eqodfi.5). The Hagedorn functions
reduce to shifted and scaled Hermite functions in the ongedsional case, but cannot in
general be reduced to tensor products of Hermite functiohggher dimensions.

Ladder Operators. In Sect. Ill.1 we constructed the Hermite functions via tdder op-
erators for the harmonic oscillator. An analogous consitvne/ia appropriate parameter-
dependent ladder operators yields the Hagedorn functions.

As in the previous section, we let > 0 be the small semi-classical parameter in
(1.5). We letg, p € R position and momentum parameters, &hd® € C?*? complex
matrices satisfying the symplecticity relations (1.1)tHis section, we denote the position
and momenturoperatorsby 7 = (g;)%—, andp = (p;){—,, respectively: for) € S(R?),

@) (z) = ap(x), (PY)(z) = —ieVip(z)  (z €RY).
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Compared with our previous notation, the hats are added da aonfusion with the
Gaussian parameteysandp. We recall the commutator relation (1.4.8), viz.,

1

— [ Pk] = G- (2.1)
Hagedorn (1998) introduces the parameter-depenaedér operatorsd = (A, );i 1
andAf = (AT) _,as

A = Agp.Q.P)= 2= (P"a~0) Q" ()

/ 22)
At = Aflg,p,Q,P] = E(P*(a— q) - Q*(ﬁ—p)) :

We note thatfod = 1,e = 1,¢ = 0,p = 0, Q = 1, P = i we have again the ladder
operators (I11.1.6) of the standard harmonic oscillatdieTkey properties (111.1.8) and
(111.1.9) extend as follows.

Lemma 2.1. If @ and P satisfy (1.1), then we have the commutator relations

[AjaAL] = 0jf - (2.3) [V:1adder - comm|

Moreover,A; is adjointto A; on the Schwartz space

(Alpl¥) = (9| A0)  VeveS. (2.4)
Proof. (a) With@ = (Q;x) andP = (P;), we have (we ley = p = 0 for simplicity)

d d
[A;, Al = % [Z PriGe — Qu;jpe) » Z (PrnjGm — @mjﬁm)} :
=1

m=1

By the canonical commutator relations (2.1), this simgdifie

d
[4; AT %Z Pfj@ék +ngﬁmk) %( Q*P+ P* Q)
£=1

By (1.1), this equalg .
(b) To verify (2.4), we write out

o d
(Aelv) = (= Pui ~Qur)e|v)
=1

. d
(ol g - ) -

where we just use thgt andp, are self-adjoint operators. O
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em | adder - nul | | Lemma 2.2. If Q and P satisfy (1.1), then the complex Gaussignof (1.4) spans the

null-space ofA.

Proof. If ¢ € Sis in the null-space ofi, then it must satisfy the linear system of partial
differential equations

—ieVo(z) — pp(z) = C(z — q)p(z)
with the complex symmetric matrik = PQ~'. Multiples of o, are the only non-trivial
solutions of this equation. O

Hagedorn Functions.In the same way as for the harmonic oscillator eigenfunstian
Sect. lll.1, we can now construct eigenfunctions of the amrsAjA; to eigenvalues
1,2,3,.... Letk = (ki1,...,kq) be a multi-index with non-negative integeks, and
denote by(j) = (0...1...0) the jth d-dimensional unit vector. By the same reasoning
as for (111.1.11) we define recursively functiops = ¢5 [, p, Q, P] by

1
== At 2.5) [V:raisin
Pt = g A (2.5)

and find that they,, are normalized eigenfunctions of the symmetric operaf{!gr;ﬁs;:

AjAl gy = (ki + Dok, llonll =1.
From this relation we obtain, in the same way as in (111.1,12)
1

O @9)

S0 thatA} and A; can be viewed as raising and lowering operators, respégtinethe
jth component of the multi-index. From (2.5) and (2.6), udimg definitions (2.2) and
the fact thatQ* is a real matrix by (1.2), we obtain the recurrence relation

Q(W‘Pk+(j) (I)) = \/g(x —q)er(x) — @(\/k_mk—<j> (x)) d:1 . (27

J
This permits us to evaluate, (x) at a given point. It also shows thapy, is the product
of a polynomial of degre&; + ... + kg with the Gaussiarp,.

d

Jj=

V-t hm hag_fun| Theorem 2.3 (Hagedorn Functions).The functionsp, = ¢5[q,p, Q, P] defined by
(1.4) and (2.5) form a complete?-orthonormal set of functions.

The orthonormality of the functionsy, follows from their property as eigenfunctions
of the symmetric operatad Af. The completeness is obtained by an extension of the
arguments in the proof of completeness of the Hermite fonstand is not proved here.

We mention that formula (1.10) for the Fourier transformeexts to all the functiongy:
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Fepila,p, Q. PI(E) = (=)™ e 9/% i [p, =g, P, =Q) () (2.8)
with |k| = k1 + ... + kq; See Hagedorn (1998).

Evolution of Ladder Operators Under Quadratic Hamiltonian s. Along a solution
(q(t),p(t), Q(t), P(t)) of the classical equations (1.6)—(1.7) we consider the-thegen-
dent operators

Aj(8) = Aja(®),p(1), Q(t), P(1)),  Al(t) = Al(a(), p(t), Q(1), P(t)).
LetH = —%A + V denote the Hamiltonian of (1.5).

V: 1 em A-evol Lemma 2.4. In the case of a quadratic potenti&l we have

: 1
Aj [Aj7H]7 AI:_E[*A;?H]

_1
T e

Proof. With (1.6)—(1.7) we obtain foA(t) = (A4,(t))

2

V2e

The same expression is obtainedfg[rA, H] on using the commutator relations (2.1) and
the ensuingt (g5, p7] = 0 - 2P and 2 [¢2, px] = 0% - 24;. The result forA' is obtained
by taking complex conjugates. O

(QTVV (@) + %PTﬁ).

Hagedorn Wave Packets and Quadratic HamiltoniansWe now have all ingredients
for the following remarkable result by Hagedorn (1998).

t hm hagwp- quad | Theorem 2.5. Let V' be a quadratic potential, and I€y(¢), p(t), Q(t), P(t)) be a solu-

tion of the classical equations (1.6)—(1.7) af¢t) the corresponding action (1.8). As-
sume that)(0) and P(0) satisfy the symplecticity relations (1.1). Then, for eveniti-
indexk,

S/ e (1), pt), Q(t), P(t)](2)

is a solution of the time-dependent Satlinger equation (1.5).

Proof. We know from Theorem 1.2 that the statement is correckfer0. In view of the
construction of the functiong;, by (2.5), the result follows by induction if we can show
that with a solution) (-, t), aIsoA}(tW(-, t) is a solution of (1.5). This holds indeed true,
because

%(Ajw) =icAly + AlHy = (igAjw +[A6 H]zp) + HAlY

i€

and the expression in big brackets vanishes by Lemma 2.4. O
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As with Theorem 1.2, the above theorem remains valid, withghme proof, for a
time-dependent quadratic potenfié(z, ¢).

Approximation Schemes in the Case of Non-Quadratic Poterais.For a time-dependent
Schrodinger equation (1.5) with a non-quadratic potéitiathe wave function can be
represented in the basis of Hagedorn functions as a series

0l 1) = SO 3 ayft) a1 2.9

keNd

(with N denoting the set of natural numbers includitg where we have abbreviated
k(@) = @ila(t),p(t), Q(1), P()](z) with (q(t).p(t), Q(), P(t)) a solution to the
classical equations (1.6)—(1.7) and whéie) is the classical action (1.8). We search for
an approximation

’L/J(.I', t) ~ wK(xa t) = eiS(t)/E Z Ck(t) Pk (:Ea t) (210)

ke

with a finite multi-index setC, which may be a cubé¢|k;| < K} or a hyperbolically
reduced set (111.1.18).

Hagedorn (1998) determines the coefficiantsrom differential equations that con-
tain higher derivatives (from the third derivative onwgrdsthe potentiall” at the clas-
sical positiong(t). He obtains approximations to the wave function of asyniptatder
O(eN/?) for arbitrary N .

Alternatively, as in Sect.1.5.2, the coefficients can béedained from the time-
dependent variational principle on the time-varying agpration space spanned by the
functionsyy (t) = @i (-, t) for k € K, by the Galerkin condition

<¢Hﬂﬁ¥%?@)—ﬂwdﬂ>:0 VkeK, Vt.
If we write the potential as

V' =Uqw) + Wy

with the quadratic Taylor polynomiél, of V' at the positiory and with the non-quadratic
remainded¥,, then we have
S/e

S/e S/e

e .
25&(01@@ i) — H(cpe™/ py) = icére’ Sy

.0, g2 , . .
+cp, (zsg(els/acpk) + %A(ezs/ggok) — Uq(ezs/gcpk)) — ckeZS/Echpk
where the term in big brackets vanishes by the version of iedme@.5 for time-dependent

quadratic potentials. (Note that only the quadratic p&renters into the equations de-
terminingq(t), p(t), Q(t), P(t), S(t)). We then obtain the differential equations for the
coefficientse = (¢ )kek as

iEé(t) = F(t)c(t) with F(t) = (<(pk | Wq(t) | sw>)k.,£e/€ .
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In the following section we give a fully discrete, explicand time-reversible time-
stepping algorithm to propagate the Gaussian paramgtigre(t), Q(t), P(t), the phase
S(t), and the coefficients; (t) of a Hagedorn wave packet (2.10).

V.3 A Numerical Integrator for Hagedorn Wave Packets

In this section we describe an algorithm by Faou, Gradinaruukich (2008) for the
approximate solution of time-dependent Schrodinger gos (1.5) in a semi-classical
setting using Hagedorn wave packets. The method is baséé eplitting between the ki-
netic and potential operatdis= —%A andV'. We consider the free linear Schrodinger
equation

.o g2
and the equation with only a potential
iaa_zp =V(z) (3.2) [ELSV
e . .

The potential will be further decomposed into its quadrptict at the current positiog
and the non-quadratic remainder.

Starting with a Hagedorn wavepacket (2.10) as initial datatfe Schrodinger equa-
tion, we will make use of the following:

e We can solve exactly the free Schrodinger equation (31i¢.Wave function remains a
Hagedorn wave packet (2.10) with unaltered coefficiepts

e For a quadratic potential, we can solve exactly equatid?) (The wave function again
remains a Hagedorn wave packet (2.10) with unaltered caeffar;,.

e For the non-quadratic remainder at the current positioncermapute the Galerkin ap-
proximation to equation (3.2) on the space spanned by thetims ¢, with fixed
parameters, p, Q, P, letting the coefficients,, in the formulation (2.10) vary.

Kinetic Part and Quadratic Potential. We will use the following properties, which
are direct consequences of Theorem 2.5. A time-dependeygdéan wavepacket (2.10)
solves the free Schrodinger equation (3.1) if

q(t) = q(0)+%p(0)
Q) = Q(0)+ = P(0) (3.3)
() = S(0)+ 5 [pO)?

andp(t) = p(0), P(t) = P(0), ck(t) = cx(0).
For a quadratic potentidl (z), a time-dependent Hagedorn wavepacket (2.10) solves
equation (3.2) with” = U if
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p(t) = p(0) —tVU(q(0))

P(t) = P(0)~tV?U(g(0))Q(0) (3.4) [quad-sol |

St) = 5(0)—tU(q(0))

andg(t) = q(0), Q(t) = Q(0), cx(t) = cx (0).

Galerkin Approximation for Non-Quadratic Potentials. Let W (x) be a given (non-
quadratic) potential and consider equation (3.2) Witlin place ofl/. We fix the Gaussian
parameters, p, @, P and take the Galerkin approximation on the linear spacersgzhy
the Hagedorn functiong;, = ¢ [q, p, @, P] for multi-indicesk € K. As we know from
the beginning of Sect. l1l.1.1, this is equivalent to theehin system of ordinary differential
equations for the coefficient$t) = (cx(t))rex Of (2.10):

iec = Fec,
where the Hermitian matrix’ has the elements

fre = (exlWloe) (k€ € K). (3.5

The solution to this problem is thus given by the action ofékponential of":

o(t) = exp(—%t F) ¢(0). (3.6) [PW

We note thatf,, = O(/2) if the quadratic Taylor polynomial ofV at ¢ vanishes.
The computation of the matrix exponential times a vector tteem be done efficiently
using just a few Lanczos iterations with, see Sect. l1.2.2. The efficient computation of
the multi—-dimensional integrals in (3.5) is the major comapional cost. Sparse Gauss—
Hermite quadrature as discussed in Sect. l1l.1.1 along idyendirections of the width
matrix ImPQ~! = (QQ*)~! is a possible computational approach. We refer to Faou,
Gradinaru & Lubich (2008) for a discussion of various waysampute these integrals.

Abstract Formulation of the Time-Stepping Algorithm. For given Gaussian parame-
tersI'0 = (¢°, p%, Q°, P°, S°) and coefficients’ = ()i as initial data, we denote

e by 7;(I"°, °) the solution to the free Schrodinger equation given by)(3.3
e by, (I'°, ") the solution of the quadratic-potential equation giveny),
e and byW,(I"°, °) the propagator given by (3.6).

With both propagatord; andWV;, the parametergand() remain constant. Moreover,
the propagatord; andV, commute. This is seen from the expressions in (3.4) and,(3.6)
noting that onlyy and@, but notp and P, enter into the definition of the matrix.

For a given step sizelt, the time-stepping algorithm is described briefly as foBow

1. Half-step of the kinetic partWe define the parametefs'/>—, °) by applying the
propagatof,, » starting from(I"°, c°). This yields updateg!/2, Q'/2 andS*/2~.
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2. Full step of the potential partVe split the potential” into its quadratic Taylor poly-
nomialU'/2 at¢'/? and the remainder terfiy '/2:

Viz) = U1/2(:17) + Wl/Q(J:) )

e We determine the parameteiE'/>+, ¢°) by applying the propagatéf,, asso-
ciated with the quadratic potenti&l'/? starting from(I"'/2~, ). This yields
update’', P! andS'/%+.

e We determine the coefficients using the propagaton/,; associated with the
non-quadratic remaindéy /2 starting frome®.

3. Half-step of the kinetic partVe define the paramete(E*, c!) by applying the prop-
agatorZ,, , starting from(I''/2+ ¢1). This yields updateg', Q* andS?.

The Practical Time-Stepping Algorithm. We now give a full algorithmic description.
Assume that the stepsiz# is given, and let the realvectorsqy™, p™, the complex] x d
matricesQ™, P", the real scalaf™, and the complex coefficient vectot = (c}!)
be such that

ke
Y=Y e gile", ", Q" P
ke

is an approximation to the solution of the Schrodinger éigng1.5) at timet™. To com-
pute the approximation™*! at timet"*! = ¢* + At we proceed as follows:

1. Compute”*+1/2, Q"+t1/2 andS™t1/2:~ via

At
qn+1/2 qn + 2_pn
m
At
Qn+l/2 _ Qn_’_%Pn (37)
At
Sn+1/2,7 = Sn4 = |pn|2'
4m
2. Compute™t!, P+ andS™t1/2+ via
"t = pt— AtVV (")
PPt = P — ALVEV (¢ T)Qr (3.8)
Sn+1/2,+ _ Sn+1/2,— _ AtV(qn+l/2).

3. Update the coefficient vectop+! = (c}j“)ke;c as
| At
R e A (3.9)

3

Here, F" /2 = (fio)r.ex is the Hermitian matrix with entries

fue = (T2 W | Y2, (3.10)
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Where<pz+l/2 = ¢ [q" T2 prtl QL2 Pl are the Hagedorn basis functions

and
Wn+1/2(f£) — V(x) _ Un+l/2($)

is the remainder in the local quadratic approximatioftagiven atq = ¢"*'/2 by
U2 (z) = V(g) + VV(q) (x — q) + 5(z — )" VZV(q) (z — q).
4. Computey™*+!, Q™+, andS™*! via

At
n+l n+1/2 n+1
q q + o p
At
Qn+1 — Qn+1/2 + 5 Pn+1 (311)
m
At
Sn+1 — Sn+1/2,+ + g |pn+1|2 )

Clearly, Step 3. treating the non-quadratic part of themitdéis the computationally most
expensive part of the algorithm, since it requires the cdmifmn of the multi-dimensional
integrals (3.10) and the evaluation of (3.9). The latter kbardone efficiently by a few
Lanczos iterations as studied in Sect. I11.2.2. For the agtatjion of the matrix elements
of F7t1/2 we refer to the discussion in Faou, Gradinaru & Lubich (2008)
The matrixF"t1/2 depends only ogp™+'/2 andQ"+'/2, but not orp”™t! and P"*1,

since the imaginary parts in the arguments of the Gaussiacetaut in (3.10), and
Im (P*H1Qn+h)—1 = (Q"H' Q"' ")~is independent oP™*! by (1.2).

Properties of the Algorithm. The algorithm is of second order accuracy in the parameters
q,p,Q, P, S andcy, and enjoys a number of attractive conservation and limipproes:

1. By construction, the algorithm is time-reversible. Thidds true because the propa-
gatord/; andW, commute, and in the steps with the potential, the positiand the
width matrix ImPQ~! = (QQ*)~! remain unchanged.

2. The algorithm preserves the symplecticity relation)thetween the matric&s and
P, since itis a composition of exact flows with no or a quadnaditential, and) and
P are not modified in the step with the non-quadratic remainder

3. The algorithm preserves ti& norm of the wave packet, since the Hagedorn func-
tionsy,, are orthonormal and the propagation of the coefficiént$is unitary.

4. For the position and momentum parameteasdp, the algorithm coincides with the
Stormer-Verlet algorithm (1.3.5) applied to the corresgimg classical equations of
motion.

5. In the limit of taking the full basis set, with all & € N¢, the Galerkin approx-
imation used in the remainder propagai®; becomes exact. Sindg, and W,
commute, the second step in the above algorithm becomesthtios of equa-
tion (3.2) in this limit. Hence, the algorithm then becombs Strang splitting
exp(—LAtH) ~ exp(—L4LT) exp(— L AtV) exp(— L 4LT) of the time-dependent
Schrodinger equation.

6. The algorithm is robust in the classical limit— 0: the propagatoiV; of the
remainder ig) (/2 At) close to the identity operator, singé'/?(z) is at least cubic
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in (xz — ¢'/?), and hence the approximation in the potential part becomast éor
¢ — 0. The kinetic part is solved exactly for all

With the exception of Property 5., the above properties alie also with an approx-
imate computation of the integrals in (3.5). A detailed eemaalysis in dependence of the
time-stepAt, the multi-index sek’, and the semi-classical parametés currently under
investigation.
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