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Preface

For dealing with atoms involving many electrons the accurate quantum theory,
involving a solution of the wave equation in many-dimensional space, is far
too complicated to be practicable. One must therefore resort to approximate
methods. (P.A.M. Dirac, 1930)

It is such approximate methods that are the subject of this book.

Tübingen, January 2008
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Chapter I.
Quantum vs. Classical Dynamics

chap:intro
In this introductory chapter we recapitulate basic elements of quantum mechanics, em-
phasizing relationships with classical mechanics and preparing for the later chapters in
a reasonably self-contained way. There are, of course, manytexts where this material is
presented more extensively and from different viewpoints.To name but a few, we mention
the gentle mathematically-minded introduction by Thaller(2000), the complementary but
visually equally appealing physical approach by Brandt & Dahmen (2001), the substantial
brief text by Gustafson & Sigal (2003) from the mathematicalphysics point of view and
the outreaching book by Tannor (2007) with a time-dependent, chemical physics perspec-
tive. There are the monumental classic treatises by Messiah(1962) and Cohen-Tannoudji,
Diu & Laloë (1977), and the historical milestones left behind by Dirac (1930) and von
Neumann (1932).

I.1 A First Look

To enter the stage, we begin by formulating the equations of motion of one (or several)
particles in classical and quantum mechanics. We consider aparticle of massm in a
conservative force field, which is the negative gradient of apotentialV (x), x ∈ R3.

I.1.1 Classical Mechanics

In classical dynamics, the state of the particle at any timet is characterized by itsposition
q(t) ∈ R3 andmomentump(t) ∈ R3. It changes in time according to the Newtonian
equations of motion

mq̈ = −∇V (q) , p = mq̇ ,

where the dots denote differentiation with respect to timet ( ˙ = d/dt). This can equiva-
lently be written as a first-order system of ordinary differential equations,

q̇ =
p

m

ṗ = −∇V (q) .
(1.1) I:newton-pq

With theHamiltonian function



2 I. Quantum vs. Classical Dynamics

Schr“”odinger
equation H(q, p) = T (p) + V (q), T (p) =

|p|2
2m

(here|p|2 = p · p is the squared Euclidean norm), which represents the total energy as the
sum of the kinetic energyT (p) and the potential energyV (q), the differential equations
become Hamilton’s canonical equations of motion

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H
∂q

(q, p) .

(1.2) I:hamil

The formalism extends in a straightforward way to a system ofN particles of masses
m1, . . . ,mN , with the position vectorq = (q1, . . . , qN )T ∈ R3N and the momentum
vectorp = (p1, . . . , pN)T ∈ R

3N collecting the positions and momenta of the particles.
The kinetic energy is then given as the sum of the kinetic energies of the particles,T (p) =∑N

n=1 |pn|2/(2mn), and the potentialV (q) = V (q1, . . . , qN ) depends on the positions
of all the particles and characterizes their interaction. The potential might in addition also
depend on time to describe phenomena in a time-varying environment. Adding one more
particle has the consequence of adding sixdependentvariables(qN+1(t), pN+1(t)) to the
system of ordinary differential equations. Computations with millions, even billions of
particles are routinely done in classical molecular dynamics simulations.

I.1.2 Quantum Mechanics

In quantum mechanics, the state at timet is described by the complex-valuedwave func-
tion ψ(x, t), depending onx ∈ R3 in the case of a single particle. Motivated by de
Broglie’s hypothesis of a particle-wave duality of matter,Schrödinger (1926) postulated
the evolution equation that has since been recognized as thefundamental law for describ-
ing non-relativistic particles in physics and chemistry:

i~
∂ψ

∂t
= Hψ . (1.3) I:schroed-eq

Here,i =
√
−1 is the imaginary unit, and~ is Planck’s constant which has the physical

dimension of an action, that is, energy divided by frequencyor momentum times length.
Its value is~ = 1.0546 · 10−34 Joule·sec. TheHamiltonian operatorH on the right-hand
side is the sum

H = T + V (1.4) I:HTV

of the kinetic energy operatorT and the potentialV . Here,

Tψ = − ~2

2m
∆ψ (1.5) I:T

with the Laplacian∆ = ∇ ·∇ (the divergence and gradient are with respect to the spatial
variablex). With themomentum operatorp = −i~∇, the expression of the kinetic energy
looks formally the same as in classical mechanics:
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Tψ =
p · p
2m

ψ .

On the other hand, the potential simply acts as a multiplication operator:

(
V ψ
)
(x) = V (x)ψ(x).

The Schrödinger equation (1.3) is thus a partial differential equation of first order in time
and second order in space.

The usualstatistical interpretationof quantum mechanics, due to Born (1926), views
|ψ(·, t)|2 as a probability density for the position of the particle: the probability of the par-
ticle to be located within a volumeΩ ⊂ R3 at timet, equals

∫
Ω
|ψ(x, t)|2 dx. Moreover,

the squared absolute value of the Fourier transform of the wave function is interpreted as
the probability density for the momentum of the particle.

The formalism again extends directly to several particles.As in the classical case,
the multi-particle Hamiltonian is constructed as the sum ofthe kinetic energies of the
single particles and a potential accounting for external forces and interaction. The Hamil-
tonian operator now acts on a wave functionψ(x1, . . . , xN , t) depending on the spatial
coordinates corresponding to each of theN particles. Its squared absolute value repre-
sents the joint probability density of particles1 to N to be at(x1, . . . , xN ) at time t.
The multi-particle wave function is a high-dimensional object: adding one more parti-
cle yields another threeindependentvariables! Computations with direct finite-difference
discretizations of Schrödinger’s equation are out of reach for more than two or three par-
ticles.

I.2 The Free Schr̈odinger Equation
sect:free

In the absence of a potential, forV = 0, the Schrödinger equation (1.3) becomes

i~
∂ψ

∂t
(x, t) = − ~2

2m
∆ψ(x, t) , x ∈ R

d, t ∈ R . (2.1) I:free

I.2.1 Dispersion Relation

Einstein’s equation
E = ~ω (2.2) I:Einstein

relates the energy of emitted electrons to the frequency of incident light in the photoelec-
tric effect, which is explained by light quanta showing the particle nature of light (Einstein
1905). It was hypothesized by de Broglie (1924) that particle-wave duality should exist
also for matter, and the energy relation (2.2) should be basic also for matter waves. As
we will see in a moment, Equation (2.1) can be understood as resulting from an effort to
reconcile (2.2) with the classical expression for the energy of a free particle with massm
and momentump,
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E =
|p|2
2m

, (2.3) I:Eclass

for solutions of a linear evolution equation

∂ψ

∂t
= P (∂x)ψ , x ∈ R

d, t ∈ R ,

with some (possibly pseudo-) differential operatorP (∂x). A plane waveei(k·x−ωt) with
wave vectork ∈ Rd and angular frequencyω is a solution of this equation ifω satisfies
thedispersion relation

ω = ω(k) = iP (ik) .

Clearly, knowing the dispersion relation is tantamount to knowing the evolution equation
with operatorP (∂x).

In relating (2.2) and (2.3), it is assumed that the momentum should be

p = mv , (2.4) I:pmv

where the velocity is taken to be thegroup velocity

v =
∂ω

∂k
, (2.5) I:vg

which is the velocity of the envelope of a localized wave packet (Hamilton 1839, Rayleigh
1877; see also Sect. I.2.3 below) and thus represents the particle velocity. With the re-
lations (2.4)–(2.5), the equality of the energies (2.2) and(2.3) becomes the condition
~ω = 1

2m|∂ω/∂k|2, which is satisfied for the dispersion relation of the free Schrödinger
equation (2.1),

~ω =
~2

2m
|k|2 . (2.6) I:disp

With (2.4)–(2.5), this further implies de Broglie’s relation

p = ~k , (2.7) I:broglie

which together with (2.2) expresses the plane wave asei(k·x−ωt) = e
i
~
(p·x−Et) .

With (2.7), the equality of the energies (2.2) and (2.3) is just the dispersion relation (2.6)
of the Schrödinger equation.

I.2.2 Solution by Fourier Transformation
subsec:fourier

We consider (2.1) together with the initial condition

ψ(x, 0) = ψ0(x) , x ∈ R
d. (2.8) I:init

To concur with the interpretation of|ψ0|2 as a probability density, we assume thatψ0 has
unitL2 norm:
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‖ψ0‖2 =

∫

Rd

|ψ0(x)|2 dx = 1 . (2.9) I:init-norm

This initial-value problem is solved using Fourier transforms. We begin by recalling the
necessary prerequisites; see, e.g., Katznelson (1976), Chap. VI, or Reed & Simon (1975),
Chap. IX. For convenience, in the following we choose physical units such that

~ = 1.

Fourier Transform. Let S denote the Schwartz space of rapidly decaying smooth func-
tions, that is, of arbitrarily differentiable complex-valued functions onRd which, to-
gether with all their partial derivatives, decay faster than the inverse of any polynomial as
|x| → ∞. For a Schwartz functionϕ ∈ S, the Fourier transform̂ϕ = Fϕ given by

ϕ̂(k) =
1

(2π)d/2

∫

Rd

e−ik·x ϕ(x) dx , k ∈ R
d, (2.10) I:fourier

is again a Schwartz function. There is the inversion formula

ϕ(x) =
1

(2π)d/2

∫

Rd

eik·x ϕ̂(k) dk , x ∈ R
d, (2.11) I:inv-fourier

and the Plancherel formula relating theL2 norms ofϕ andϕ̂,

‖ϕ‖ = ‖ϕ̂‖ . (2.12) I:plancherel

The Fourier transform changes partial derivatives into multiplication by the Fourier vari-
able:

−i∂̂jϕ(k) = kjϕ̂(k) , (2.13) I:fourier-diff

and hence the negative Laplacian is transformed into multiplication by the squared Eu-
clidean norm|k|2 = k2

1 + · · · + k2
d :

−∆̂ϕ(k) = |k|2ϕ̂(k) . (2.14) I:fourier-lap

By density or duality, the above formulas are extended to appropriate larger spaces of
functions or distributions.

Solution via Fourier Transformation. Formally taking Fourier transforms with re-
spect to the spatial variablex in (2.1) yields decoupled ordinary differential equations
parametrized by the dual variablek:

i
∂ψ̂

∂t
(k, t) =

|k|2
2m

ψ̂(k, t) , k ∈ R
d,

which are solved by

ψ̂(k, t) = e−i
|k|2

2m t ψ̂0(k) . (2.15) I:psi-hat



6 I. Quantum vs. Classical Dynamics

Obviously, |ψ̂(k, t)|2 = |ψ0(k)|2 for all k and t. We note that for initial data in the
Schwartz space,ψ0 ∈ S, we haveψ̂0 ∈ S and thus further̂ψ(·, t) ∈ S for all real t.
The function obtained by the inverse Fourier transform (2.11),

ψ(x, t) =
1

(2π)d/2

∫

Rd

ei(k·x−
|k|2

2m t) ψ̂0(k) dk , (2.16) I:psi-free

is thus again a Schwartz function, and by the above transformrules, this function is veri-
fied to be a solution to (2.1) with (2.8). We have unitL2 norm

‖ψ(·, t)‖2 = 1 for all t (2.17) I:psi-norm

by the Plancherel formula, by (2.15) and condition (2.9), sothat|ψ(·, t)|2 remains a prob-
ability density for all times.

The Free-Evolution Operator.With the kinetic energy operatorT = − 1
2m∆, we use the

notation
ψ(·, t) = ψ(t) =: e−itTψ0 .

This defines the evolution operator

e−itT : S → S.

By (2.17) and because the Schwartz spaceS is dense in the Hilbert spaceL2 of square-
integrable functions, we can extend the operator to a norm-preserving operator

e−itT : L2 → L2,

and we considere−itTψ0 for arbitraryψ0 ∈ L2 as a generalized solution to the free
Schrödinger equation (2.1) with initial state (2.8).

I.2.3 Propagation of Heavy Wave Packets
subsec:wavepacket

We consider the free Schrödinger equation (2.1) with~ = 1, and as initial state a wave
packet

ψ0(x) = eip·x a(x) with a ∈ S, p ∈ R
d, (2.18) I:wavepacket

where we are particularly interested inp of large norm, so that a highly oscillatory com-
plex exponential is modulated by the smooth, rapidly decaying functiona(x). We show
that the following holds for the solution of (2.1), uniformly in p ∈ R

d as the mass
m→ ∞:

ψ(x, t) = eip·(x−
p

2m t) a
(
x− p

m
t
)

+ O
( t
m

)
. (2.19) I:large-m

Here we note thephase velocityp/(2m) in the argument of the exponential and thegroup
velocityv = p/m in the argument ofa, and

|ψ(x, t)|2 ≈ |ψ0(x− vt)|2 ,
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which describes uniform straight motion of the envelope with the group velocityv. In
particular, the centre of the wave packet,q(t) =

∫
Rd x |ψ(x, t)|2 dx, moves according to

q(t) ≈ q(0) + t
p

m
. (2.20) I:large-m-q

Heavy particles thus show approximately classical behaviour.

Proof of(2.19): We start from formula (2.16) forψ(x, t) and note that̂ψ0(k) = â(k− p).
We decompose|k|2 = |k − p + p|2 = |p|2 + 2(k − p) · p + |k − p|2 and substitute the
integration variablek for k − p to obtain

ψ(x, t) = eip·x e−i
|p|2

2m t 1

(2π)d/2

∫

Rd

eik·x e−ik·
p
m t e−i

|k|2

2m t â(k) dk .

With the relation|e−i |k|2

2m t − 1| ≤ |k|2 t
m , we obtain with the inverse Fourier transform

formula

ψ(x, t) = eip·x−i
|p|2

2m t 1

(2π)d/2

∫

Rd

eik·(x−
p
m t) â(k) dk + O

( t
m

)

= eip·x−i
|p|2

2m t a
(
x− p

m
t
)

+ O
( t
m

)
,

where the constant in theO-symbol isC =
∫

Rd |k|2|â(k)| dk. ⊓⊔

I.3 The Schrödinger Equation with a Potential

We now turn to the Schrödinger equation (1.3) with a real-valued potentialV (x), x ∈ Rd,

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V ψ. (3.1) I:schroed-V

For convenience we choose again units with~ = 1, as we will usually do when we treat
mathematical rather than physical questions.

I.3.1 Self-Adjoint Operators and Existence of Dynamics

The existence of solutions to (3.1) rests on the theory of self-adjoint unbounded operators
on a Hilbert space. Let us briefly recall the relevant concepts.

LetH be a complex Hilbert space with inner product〈· | ·〉, taken antilinear in its first
and linear in its second argument. A linear operatorH : D(H) → H, defined on a domain
D(H) dense inH, is calledsymmetricif

〈Hψ |ϕ〉 = 〈ψ |Hϕ〉 ∀ψ, ϕ ∈ D(H).
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The operator isself-adjointif for anyϕ, η ∈ H the relation

〈Hψ |ϕ〉 = 〈ψ | η〉 ∀ψ ∈ D(H) implies ϕ ∈ D(H) and η = Hϕ.

Every self-adjoint operator is symmetric, but the converseis not true for unbounded oper-
ators. Every self-adjoint operator isclosed: for any sequence(ϕn) in D(H), the conver-
genceϕn → ϕ, Hϕn → η implies ϕ ∈ D(H) and η = Hϕ.

An operatorU onH is unitary if it preserves the inner product:

〈Uψ |Uϕ〉 = 〈ψ |ϕ〉 ∀ψ, ϕ ∈ H.

As the following theorem states, for self-adjoint operatorsH the abstract Schrödinger
equation

i
dψ

dt
= Hψ (3.2) I:schroed-abstract

has a unitary evolution.

Theorem 3.1 (Existence of Dynamics).Assume thatH is a self-adjoint operator on aI:thm:existence
Hilbert spaceH. Then, there is a unique family of unitary operatorse−itH , t ∈ R, with
the following properties:

1. The operatorse−itH have the group property:

e−i(t+s)H = e−itH e−isH for all s, t ∈ R .

2. The mappingt 7→ e−itH is strongly continuous: for everyψ0 ∈ H,

e−itHψ0 → ψ0 in theH-norm ast→ 0 .

3. Equation (3.2) with initial valueψ0 ∈ D(H) has the solutionψ(t) = e−itHψ0 :

i
d

dt
e−itHψ0 = He−itHψ0 ,

where the expressions on both sides of the equality sign indeed exist.

Theorem 3.1 can be proved by first noting that it holds for bounded operators, then
by approximatingH by a sequence of symmetric bounded operatorsHn and carefully
passing to the limit in the exponentialse−itHn ; see Gustafson & Sigal (2003), Chap. 2.
Another proof is based on the spectral theory of self-adjoint operators as developed by
von Neumann and put to good use in his mathematical foundations of quantum mechan-
ics (von Neumann, 1932). Based on von Neumann’s spectral theory, Theorem 3.1 was
given by Stone (1932) who also proves an interesting converse: if U(t), t ∈ R, is a
strongly continuous group of unitary operators, thenU(t) = e−itH for some self-adjoint
operatorH .
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I.3.2 Potentials Giving Self-Adjoint Operators

In applying Theorem 3.1 to the Schrödinger equation (3.1) on the Hilbert spaceH =
L2(Rd) of square-integrable functions, we need conditions that ensure that the Hamilto-
nianH = T + V is a self-adjoint operator. While symmetry is easily obtained, showing
self-adjointness can be quite subtle.

First we remark thatT = − 1
2m∆ is self-adjoint with the domainD(T ) = H2(Rd),

the Sobolev space of functions which together with their generalized partial derivatives
up to order 2 are square integrable. (This is shown using Fourier transforms.)

Knowing thatT is self-adjoint, what can we say aboutT+V ? The following very use-
ful perturbation result is known as theKato-Rellich theorem, see Kato (1980), Sect. V.4.1,
Theorem 4.3:

Let T be a self-adjoint operator on a Hilbert space, andV a symmetric operator
bounded by‖V ψ‖ ≤ a‖ψ‖ + b‖Tψ‖ for all ψ ∈ D(T ), with b < 1. Then,H = T + V
is self-adjoint with domainD(H) = D(T ).

In particular, forT = − 1
2m∆ a bounded potential always gives a self-adjoint Hamil-

tonianH = T + V with domainH2(Rd). A simple criterion that follows from the above
result with the Sobolev inequality onR3, is the following (Kato 1980, Sect. V.5.3): As-
sume

V = V∞ + V2 with V∞ ∈ L∞(R3), V2 ∈ L2(R3).

Then,T + V is self-adjoint with domainD(H) = H2(R3). For example, this applies to
theCoulomb potentialV (x) = |x|−1.

An enlightening discussion and a variety of results on the self-adjointness of Schrödinger
operators are given in Chapter X of Reed & Simon (1975). Remarkably, self-adjoint ex-
tensions always exist for a potential bounded from below (ibid., p. 177), but they need not
be unique, and different extensions can correspond to different physics (ibid., p. 145). A
unique self-adjoint extension is known to exist for every non-negative continuousconfin-
ing potential, that is, satisfyingV (x) → ∞ as|x| → ∞; see Hislop & Sigal (1996).

Later in this text, we will not pay much attention to the subtleties of self-adjointness
and, in cases of possible doubt, we simply assume that the potential is such thatH =
T + V yields a well-defined self-adjoint operator onL2(Rd).

I.3.3 Lie–Trotter Product Formula

We have already constructed the free-particle evolution operatore−itT by Fourier trans-
formation, and for the potential we simply have

(
e−itV ψ

)
(x) = e−itV (x)ψ(x). We do

nothavee−i(T+V ) = e−itT e−itV , but there is the following result due to Trotter (1959),
whose finite-dimensional version is credited to Lie. See also Reed & Simon (1972), The-
orem VIII.30, for precisely this version and a short proof.

I:thm:trotter Theorem 3.2. Suppose thatT ,V , andH = T+V are self-adjoint operators on a Hilbert
spaceH. Then, for everyt ∈ R andϕ ∈ H,

e−itHϕ = lim
n→∞

(
e−itT/n e−itV/n

)n
ϕ .
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In view of the strong continuity ofe−itV , an equivalent statement is

e−itHϕ = lim
n→∞

(
e−itV/(2n) e−itT/n e−itV/(2n)

)n
ϕ .

We will encounter the short-time approximation (over a small time step∆t)

e−i∆tH ≈ e−i∆tV/2 e−i∆tT e−i∆tV/2 , (3.3) I:strang

known assymmetric Trotter splittingor Strang splitting, repeatedly in this text, in var-
ious versions and disguises. This is one of the most widely used approximations to the
evolution operator in computations.

Relationship with the Störmer–Verlet Method for Classical Mechanics.Consider now
a wave packet as in Sect. I.2.3,ψ0(x) = eip·xa(x), where we think ofa(x) as being
localized nearx = q. We consider the Taylor expansion of the potentialV (x) at q,

V (x) = V (q) + ∇V (q) · (x− q) +Q(x, q)

with the quadratic remainder termQ, so that we have

e−i
∆t
2
V (x)ψ0(x) = ei(p·q−

∆t
2
V (q)) ei(p−

∆t
2

∇V (q))·(x−q) e−i
∆t
2
Q(x,q) a(x) . (3.4) I:exp-V

Here the first exponential on the right-hand side carries a phase which is modified by
−∆t

2 V (q) over the half-step∆t2 . More interesting to us, in the second exponential themo-
mentump is shifted top− ∆t

2 ∇V (q). We recall that in (2.20) we had a shift fromposition
q to q + ∆t p/m for the centre of the wave packet propagated by the free evolution op-
eratore−i∆tT in the situation of a large massm. Combining these formulas for changing
momenta and positions as they appear from the compositione−i∆tV/2 e−i∆tT e−i∆tV/2

of (3.3), we arrive at the following scheme: starting fromq0, p0, set

p1/2 = p0 − 1

2
∆t∇V (q0)

q1 = q0 +∆t
p1/2

m
(3.5) I:verlet

p1 = p1/2 − 1

2
∆t∇V (q1) .

This is theSẗormer–Verlet methodfor the numerical solution of the Newtonian equations
of motion (1.1), which is by far the most widely used numerical integration method in
classical molecular dynamics. See Hairer, Lubich & Wanner (2003) for a discussion of
this basic numerical method and its remarkable properties.We further note from (2.19)
and (3.4) that the overall phase (the term in the exponentialthat is independent ofx) is
modified to

φ1 = φ0 +∆t

∣∣p1/2
∣∣2

2m
− 1

2
∆t
(
V (q0) + V (q1)

)
,

where the increment is a quadrature formula approximation to the classical action integral∫ ∆t
0

( |p(t)|2
2m − V (q(t))

)
dt along the solution(q(t), p(t)) of the classical equations of

motion (1.1). We will explore relationships between (3.3) and (3.5) in more depth in
Chapter V.
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I.4 Averages, Commutators, Uncertainty

We consider again the Schrödinger equation (3.1) with the HamiltonianH = T + V and
look at spatial averages of position, momentum, etc. along the wave function.

I.4.1 Observables and Averages

With the jth position coordinate as multiplication operator,
(
qjψ)(x) = xjψ(x), and a

functionψ of unitL2 norm withqjψ ∈ L2, we associate

〈ψ | qjψ〉 =

∫

Rd

xj |ψ(x)|2 dx ,

which represents thejth component of theposition averageof the stateψ, that is, the
expectation value of thejth component of the position with respect to the probability
density|ψ|2.

With thejth component of the momentum operator,pj = −i~ ∂/∂xj, we form (for
ψ ∈ D(pj) and of unitL2 norm)

〈ψ | pjψ〉 =

∫

Rd

ψ(x)
(
−i~ ∂ψ

∂xj

)
dx =

∫

Rd

~kj |ψ̂(k)|2 dk ,

which is thejth component of themomentum averageof the stateψ (recall de Broglie’s
relation (2.7):pj = ~kj). Similarly, we can consider thetotal energy〈ψ |Hψ〉. It is such
averages that can be observed experimentally.

Noting thatqj , pj , H are self-adjoint operators onL2, more generally we call any self-
adjoint operatorA : D(A) → L2 anobservable. Its average in the stateψ (ψ of unitL2

norm andψ ∈ D(A)) is written, in varying notations,

〈A〉 = 〈A〉ψ = 〈ψ |A |ψ〉 = 〈ψ |Aψ〉 . (4.1) I:brackets

I.4.2 Heisenberg Picture and Ehrenfest Theorem

Evolution of Averages and the Heisenberg Picture.We now study how the average
〈A〉(t) = 〈A〉ψ(t) of an observableA changes in time along a solutionψ(t) = ψ(·, t) of
the Schrödinger equation (1.3). Sinceψ(t) = e−itH/~ψ0, we have

〈A〉ψ(t) = 〈A(t)〉ψ0
with A(t) = eitH/~Ae−itH/~ . (4.2) I:heis-pic

The operatorA(t) is said to give theHeisenberg pictureof the evolution of the observ-
able (after Heisenberg, 1925), as opposed to the Schrödinger picture working with wave
functions. For a fixed initial stateψ0, Eq. (4.2) can be written more briefly as

〈A〉(t) = 〈A(t)〉 . (4.3) I:heis-aver
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Heisenberg Equation.A formal calculation, using the familiar relationsddte
−itH/~ =

1
i~He

−itH/~ = e−itH/~ 1
i~H , yields

dA

dt
(t) =

1

i~
eitH/~ (−HA(t) +A(t)H) e−itH/~

and hence, with thecommutator[A,H ] = AH − HA and with ˙ = d/dt, we have the
Heisenberg equation

Ȧ(t) =
1

i~
[A(t), H ] . (4.4) I:heis-eq

Remark.Some care is needed in giving a precise meaning to the commutator of un-
bounded self-adjoint operators, which in general need not exist. We note, however, that
for initial statesψ0 in a domainD whichA maps intoD(H) andH maps intoD(A), the
averages of both sides of (4.4) are well-defined and are indeed equal.

Energy Conservation.SinceH commutes with itself, we obtain from (4.3) and (4.4) that
the total energy is conserved along every solution of the Schrödinger equation:

d

dt
〈H〉(t) = 0. (4.5) I:energy-cons

Formal Analogy with Classical Mechanics.The Heisenberg equation (4.4) shows a
close analogy to the corresponding situation in classical mechanics: a real-valued function
F (q, p) along a solution(q(t), p(t)) of the Hamiltonian equations (1.2) changes according
to

d

dt
F (q(t), p(t)) =

{
F,H

}
(q(t), p(t))

with thePoisson bracket

{
F,G

}
=

d∑

j=1

( ∂F
∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
,

as is seen by the chain rule and using (1.2). Formally thus, one bracket replaces the other
in going from classical to quantum mechanics.

We now consider the Heisenberg equations (4.4) for the position and momentum oper-
ators, with componentsqj andpj : the corresponding time-dependent operatorsqj(t) =
eitH/~qje

−itH/~ andpj(t) = eitH/~pje
−itH/~ satisfy

q̇j(t) =
1

i~
[qj(t), H ]

ṗj(t) =
1

i~
[pj(t), H ] .
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We note that[qj(t), H ] = eitH/~[qj , H ]e−itH/~ and similarly forpj(t). For a Hamilto-

nianH = T + V with kinetic energyT = − ~
2

2m ∆ and with a potentialV (x) acting as a
multiplication operator, we calculate

1

i~
[qj , H ]ψ =

1

i~
[qj , T ]ψ = − 1

i~

d∑

ℓ=1

~2

2m

[
qj ,

∂2

∂x2
ℓ

]
ψ = − i~

m

∂ψ

∂xj
=
pj
m
ψ

1

i~
[pj , H ]ψ =

1

i~
[pj, V ]ψ = − ∂

∂xj
(V ψ) + V

∂ψ

∂xj
= − ∂V

∂xj
ψ .

This gives us Heisenberg equations that look like the classical equations of motion (1.1):

q̇(t) =
p(t)

m

ṗ(t) = −∇V (t)

(4.6) I:heis-pq

with ∇V (t) = eitH/~ ∇V e−itH/~.

Ehrenfest Theorem.When we take averages〈·〉 = 〈·〉ψ(t) on both sides of (4.6) accord-
ing to (4.3), then we obtain the result by Ehrenfest (1927) that the position and momentum
averages evolve by Newton-like equations:

d

dt
〈q〉 =

〈p〉
m

d

dt
〈p〉 = −〈∇V 〉 .

(4.7) I:ehrenfest

It should be noted, however, that in general

〈∇V 〉 6= ∇V
(
〈q〉) ,

unless the potential is quadratic.

I.4.3 Heisenberg Uncertainty Relation

Still in analogy with classical mechanics, position and momentum arecanonically conju-
gateobservables, which here means that they satisfy (with Kronecker’s delta)

1

i~
[qj , pk] = δjk , (4.8) I:qp-comm

as is readily verified by a direct calculation of the commutator similar to the one given
above. This has an important consequence to which we turn next. We define thestandard
deviationor uncertainty widthof an observableA in a stateψ as

∆A =
〈
(A− 〈A〉)2

〉1/2
, (4.9) I:dispersion

where the average is taken with respect to the given stateψ.
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Theorem 4.1 (Heisenberg Uncertainty Relation).The standard deviations of the posi-
tion and momentum operators satisfy the inequality

∆qj ∆pj ≥
~

2
. (4.10) I:heis-uncert

According to Heisenberg (1927), this now world-famous inequality is interpreted as say-
ing that it is impossible to know at the same time both the position and momentum of an
object with arbitrarily small uncertainty .

Proof. The result follows from (4.8) and from theRobertson-Schrödinger relationwhich
states that for any observablesA andB,

∆A∆B ≥ 1

2

∣∣∣
〈
[A,B]

〉∣∣∣ . (4.11) I:rs

This is obtained with the Cauchy-Schwarz inequality and theidentity

−2 Im 〈Aψ |Bψ〉 = 〈ψ | i[A,B]ψ〉

as follows (we may assume〈A〉 = 〈B〉 = 0 for ease of notation):

∆A∆B = ‖Aψ‖ · ‖Bψ‖ ≥
∣∣〈Aψ |Bψ〉

∣∣ ≥
∣∣Im 〈Aψ |Bψ〉

∣∣ =
1

2

∣∣〈i[A,B]〉
∣∣ . ⊓⊔

I.5 Many-Body Systems

I.5.1 Distinguishable Particles

Consider firstN independent free particles, without any interaction, numbered from
n = 1, . . . , N . The probability density at timet for particlen to be at positionxn is
|ψn(xn, t)|2, the square of the absolute value of the wave function. Sincethe particles are
assumed independent, the joint probability density for particle 1 atx1, . . . , particleN at
xN is the product

∏N
n=1 |ψn(xn, t)|2, which is the squared absolute value of the product

wave functionψ(x1, . . . , xN , t) =
∏N
n=1 ψn(xn, t) that solves the3N -dimensional free

Schrödinger equation

i~
∂ψ

∂t
= Tψ with T =

N∑

n=1

Tn , Tn = − ~2

2mn
∆n ,

where∆n is the Laplacian with respect to the variablexn. Similarly, if each particle
is subjected to an external potentialVn(xn), then the product wave function solves a
Schrödinger equation with a potential that is the sum of thesingle-particle potentials.
With particles interacting via a potentialV (x1, . . . , xN ), however, the solution of the
multi-particle Schrödinger equation
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i~
∂ψ

∂t
= Hψ , H = T + V , ψ = ψ(x1, . . . , xN , t) ,

is in general no longer in product form. As a roughapproximationto the high-dimensional
wave function we might still look for a function in product form — an old idea realized
in the time-dependentHartree methoddiscussed in Chapter II.

I.5.2 Indistinguishable Particles
subsec:indist

When particles cannot be distinguished in their physical properties, such as mass, charge,
or spin, then the average of any observable is required to remain unchanged under an
exchange of the particles. More formally, for two identicalparticles 1 and 2, denote by
Rψ(x1, x2, t) = ψ(x2, x1, t) the wave function for exchanged particles. It is then required
that for every observableA and at every timet,

〈Rψ |A |Rψ〉 = 〈ψ |A |ψ〉 . (5.1) I:exch

To see the implications of this condition, consider the decomposition of the wave function
into its symmetric and antisymmetric parts:ψ = ψ+ + ψ− with Rψ+ = ψ+ andRψ− =
−ψ−. Condition (5.1) then yields Re〈ψ+ |A |ψ−〉 = 0 for all observablesA, which turns
out to imply that eitherψ− = 0 orψ+ = 0.

We are thus left with two possibilities, symmetry or antisymmetry:

ψ(x2, x1, t) = ψ(x1, x2, t) (bosons) or (5.2) I:boson

ψ(x2, x1, t) = −ψ(x1, x2, t) (fermions). (5.3) I:fermion

Remarkably, for one kind of physical particle, always one and the same of the two cases
is realized. The two situations lead to very different physical behaviour. It is the antisym-
metry (5.3) that is known to hold for electrons, protons and neutrons: these arefermions.
They obey thePauli exclusion principle(Pauli 1925) which postulates that like particles
cannot simultaneously be in the same quantum state. Note that (5.3) implies

ψ(x, x, t) = 0 ,

so that two identical fermions cannot be at the same positionat the same time.
A product state does not have the antisymmetric behaviour (5.3) but it can be anti-

symmetrized: with two indistinguishable particles,

ψ(x1, x2, t) =
1√
2

(
ϕ1(x1, t)ϕ2(x2, t) − ϕ1(x2, t)ϕ2(x1, t)

)

has the required antisymmetry (and vanishes ifϕ1(·, t) = ϕ2(·, t), in accordance with the
Pauli principle), and so does theSlater determinant

ψ(x1, . . . , xN , t) =
1√
N !

det
(
ϕj(xn, t)

)N
j,n=1

(5.4) I:slater
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in the case ofN identical particles. Approximation of the electronic wavefunction by
Slater determinants of orthogonal orbitals (i.e., single-electron wave functions)ϕj is done
in the time-dependentHartree–Fock method, see Chapter II.

It is also of interest to see what is the effect of ignoring antisymmetry in the approxi-
mation of the wave function of well-separated identical fermionic particles. Suppose that
φ(x1, x2, t) is a solution of the time-dependent Schrödinger equation which is essentially
localized near(〈x1〉(t), 〈x2〉(t)) but which is not antisymmetric. As long as〈x1〉(t) and
〈x2〉(t) remain clearly separated (well beyond the widths∆x1(t) and∆x2(t)), the anti-
symmetrizationφ(x1, x2, t)−φ(x2, x1, t) does not deviate substantially fromφ(x1, x2, t)
in a neighbourhood of(〈x1〉(t), 〈x2〉(t)), so that the particles can be considered to be dis-
tinguishable by their well-separated positions. This observation often justifies ignoring
antisymmetry in the treatment of identicalnucleiof a molecule, for which the above lo-
calization and separation condition is usually met in chemistry. On the other hand, for the
less localizedelectronsa careful treatment of antisymmetry is essential.

I.5.3 The Molecular Hamiltonian
I:subsec:mol

For a molecule, the Hamiltonian is the sum of the kinetic energy of the nuclei and the
electrons, and the potential is the sum of the Coulomb interactions of each pair of parti-
cles:

Hmol = T + V with T = TN + Te and V = VNN + VNe + Vee . (5.5) I:Hmol

ForN nuclei of massesMn and electric chargesZne, with position coordinatesxn ∈ R
3,

andL electrons of massm and charge−e, with coordinatesyℓ ∈ R3, the respective
kinetic energy operators are

TN = −
N∑

n=1

~2

2Mn
∆xn Te = −

L∑

ℓ=1

~2

2m
∆yℓ

,

and the potential is the sum of the nucleus-nucleus, nucleus–electron and electron–
electron interactions given by

VNN (x) =
∑

1≤k<n≤N

Zk Zn e
2

|xk − xn|
, VNe(x, y) = −

L∑

ℓ=1

N∑

n=1

Zne
2

|yℓ − xn|
,

Vee(y) =
∑

1≤j<ℓ≤L

e2

|yj − yℓ|
.

It is often convenient to chooseatomic unitswhere~ = 1, the elementary chargee = 1,
the mass of the electronm = 1, and where the length unit is chosen such that the Bohr
radius of the hydrogen atom isr = 1.

The self-adjointness of such Hamiltonian operators, with domainH2(R3N+3L), has been
shown by Kato (1951); see also Reed & Simon (1975), Theorem X.16.
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Any attempt to “solve” numerically the molecular Schrödinger equation

i~
∂Ψ

∂t
= Hmol Ψ , Ψ = Ψ(x1, . . . , xN , y1, . . . , yL, t)

faces a variety of severe problems:

– the high dimensionality (even for a small molecule such as CO2, there are 3 nuclei and
22 electrons, so thatΨ is a function onR75!);

– multiple scales in the system (the mass of the electron is approximately 1/2000 of the
mass of a proton);

– highly oscillatory wave functions.

To obtain satisfactory results in spite of these difficulties, one requires a combination of
model reduction, based on physical insight and/or asymptotic analysis, andnumerical
techniquesused on the reduced models that are intermediate between classical and full
quantum dynamics. This is the subject of the following chapters.



18 I. Quantum vs. Classical Dynamics



Chapter II.
Reduced Models via Variational Approximation

chap:qvar
There is a wide variety of models, or approximations, that are intermediate between
the full time-dependent Schrödinger equation of many-body quantum mechanics and the
Newtonian equations of classical mechanics. Most of these models are based on a time-
dependent variational principle, first used by Dirac (1930), which plays a similarly funda-
mental role for the time-dependent Schrödinger equation as the Rayleigh-Ritz variational
principle does for the Schrödinger eigenvalue problem. Indeed, several of the methods for
the stationary problem, as for example the Hartree–Fock method, have a time-dependent
analogue that comes about by the same choice of approximation manifold to which the
variational principle is restricted. There are, however, different aspects that come into
play in the time-dependent situation, both in the modeling/approximation aspects and in
the numerical treatment of the reduced models.

We first give an abstract formulation and various interpretations of the time-dependent
variational principle, and then turn to some basic examplesthat gradually take us from the
full molecular Schrödinger equation down to classical molecular dynamics: the adiabatic
or time-dependent Born–Oppenheimer approximation that eliminates the electronic de-
grees of freedom, the time-dependent self-consistent fieldapproximation that separates
the nuclei, and Gaussian wavepacket dynamics that parametrizes the single-particle wave
functions. At the end of the chapter we address the theoretical question of approximation
properties of variational approximations.

II.1 The Dirac–Frenkel Time-Dependent Variational
Principle

II:sect:qvar
In this section we give the abstract formulation of the time-dependent variational principle
and discuss its structural properties.

II.1.1 Abstract Formulation
II:subsec:qvar

We consider an abstract Schrödinger equation on a complex Hilbert spaceH with inner
product〈·|·〉, taken antilinear in its first and linear in its second argument, and with a
HamiltonianH that is a self-adjoint linear operator onH,
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dψ

dt
=

1

i~
Hψ . (1.1) II:schroed-eq

LetM be a smooth submanifold ofH, and foru ∈ M denote byTuM the tangent space
atu, which consists of the derivatives of all differentiable paths onM passing throughu.
We think ofM as an approximation manifold on which an approximate solutionu(t) to
the solutionψ(t) of (1.1) with initial datau(0) = ψ(0) ∈ M is sought. The functiont 7→
u(t) ∈ M is determined from the condition that at every timet, its derivativedu/dt (t),
which lies in the tangent spaceTu(t)M, be such that the residual in the Schrödinger
equation is orthogonal to the tangent space:

du

dt
∈ TuM such that

〈
v
∣∣∣ du
dt

− 1

i~
Hu
〉

= 0 ∀ v ∈ TuM . (1.2) II:qvar

The tangent spaceTuM is known to be a real-linear closed subspace ofH. We will always
assume that in fact

TuM is a complex linear space, (1.3) II:comp-tang

that is, with v ∈ TuM, also iv ∈ TuM. In this situation we get the same condition if
we consider only the real part or the imaginary part of the inner product of (1.2). We will
see, however, that these two cases lead to very different interpretations: as an orthogonal
projection onto the tangent space in case of the real part, asa symplectic projection and
as the Euler–Lagrange equations of an action functional in case of the imaginary part.

We remark that from a numerical analysis point of view, condition (1.2) can be seen
as a Galerkin condition on the state-dependent approximation spaceTuM.

Historical Note. Dirac (1930) used condition (1.2) without further comment to derive the
equations of motion of what is now known as the time-dependent Hartree–Fock method.
Frenkel (1934), p. 253, gives the interpretation as an orthogonal projection and refers to
the appendix of the Russian translation of Dirac’s book as the origin of the argument.
Some thirty years later, the Dirac–Frenkel reasoning was taken up again by McLach-
lan (1964) and enriched by further examples. Condition (1.2) is therefore often called the
Dirac–Frenkel–McLachlan time-dependent variational principle in the chemical physics
literature, see Heller (1976) and, e.g., Baer & Billing (2002). In theoretical and nuclear
physics, the derivation from Dirac’s quantum-mechanical action functional and with it the
symplectic viewpoint has rather been emphasized; see Kerman & Koonin (1976), Rowe,
Ryman & Rosensteel (1980), Kramer & Saraceno (1981) and, e.g., Feldmeier & Schnack
(2000).

II.1.2 Interpretation as an Orthogonal Projection

Taking the real part in (1.2), we arrive at the minimum condition for the following linear
approximation problem:

du

dt
is chosen as thatw ∈ TuM for which

∥∥∥w − 1

i~
Hu

∥∥∥ is minimal. (1.4) II:orth-proj

(Note that‖w + v − 1
i~Hu‖2 = ‖w − 1

i~Hu‖2 + 2 Re〈v |w − 1
i~Hu〉 + ‖v‖2.)
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u
w = P (u) 1

i~
Hu

1

i~
Hu

M

TuM

Fig. 1.1.Orthogonal projection to the tangent space.

In other words,du/dt is theorthogonal projectionof 1
i~Hu onto the tangent space

TuM. With the orthogonal projection operator ontoTuM denoted byP (u), we can thus
rewrite (1.2) as a differential equation on the manifoldM,

du

dt
= P (u)

1

i~
Hu , (1.5) II:ode-orth

which isnonlinearunlessM is a linear subspace ofH. The (global or local in time) exis-
tence of a solutionu(t) ∈ D(H)∩M can be ascertained only with further specifications
about the operatorH and the manifoldM. In the following we make formal calculations
which implicitly assume that a sufficiently regular solution u(t) exists.

II.1.3 Interpretation as a Symplectic Projection
II:subsec:sym-pro

The real-bilinear form

ω(ξ, η) = −2~ Im 〈ξ | η 〉 , ξ, η ∈ H ,

is antisymmetric, andω is called the canonicalsymplectic two-formonH. SinceTuM is
a complex linear space, for everyϕ ∈ H there exists a unique

w = P (u)ϕ ∈ TuM such that ω(v, w) = ω(v, ϕ) ∀ v ∈ TuM .

This non-degeneracy of the two-formω makesM a symplectic submanifoldof H, and
P (u) is thesymplectic projectionoperator ontoTuM. (HereP (u) actually coincides with
the orthogonal projection considered in the previous subsection.) Taking the imaginary
part in condition (1.2) and multiplying with−2~ yields
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ω
(
v,
du

dt

)
= 2 Re

〈
v
∣∣Hu

〉
∀ v ∈ TuM . (1.6) II:hamil-eq-0

We introduce the Hamilton function as the average of the Hamiltonian operator,

H(u) = 〈u |H |u〉

(we use the same symbolH as for the operator). The right-hand side in (1.6) is now
recognized as the derivativedH(u)v in the direction ofv. Now, (1.6) rewritten as

ω
(
v,
du

dt

)
= dH(u)v ∀ v ∈ TuM , (1.7) II:hamil-eq

is aHamiltonian systemon the symplectic manifoldM with the Hamilton functionH(u);
see Marsden & Ratiu (1999), Chap. 5.4. Let us state and verifybasic properties of this
system.

Theorem 1.1 (Energy Conservation).The total energy〈H〉 is conserved along solu-II:thm:energy
tions of the Hamiltonian system (1.7) onM .

Proof. We have (witḣ= d/dt)

d

dt
〈u |H |u〉 = 2 Re

〈
u̇
∣∣Hu

〉
= ω(u̇, u̇) = 0

on using (1.6) withv = u̇ ∈ TuM in the second equation. ⊓⊔

There is also the following important conservation property, which we first state
briefly and then explain in detail.

Theorem 1.2 (Symplecticity).The flow of the Hamiltonian system (1.7) is symplectic.II:thm:symplectic

This means that the symplectic two-formω is preserved in the following sense: Letu0 ∈
M, and letv0 ∈ Tu0

M be a tangent vector atu0. Then there is a pathγ(τ) onM with
γ(0) = u0 anddγ/dτ (0) = v0. Let u(t) = u(t, u0) be the solution of (1.7) with initial
datau0, and denote by

v(t) =
d

dτ

∣∣∣
τ=0

u(t, γ(τ)) ∈ Tu(t)M

the tangent vector propagated along the solutionu(t, u0) (note thatv(t) is the solution
with initial datav0 to the differential equation linearized atu(t, u0)). Letw(t) be another
tangent vector propagated along the same solution, corresponding to an initial tangent
vectorw0 atu0. Then, the statement of Theorem 1.2 is that

d

dt
ω(v(t), w(t)) = 0 . (1.8) II:sympl-flow
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Proof. By the bilinearity and antisymmetry ofω we have

d

dt
ω(v, w) = −ω(w, v̇) + ω(v, ẇ) .

Differentiating (1.6) with respect to the inital value, we obtain that this equals

d

dt
ω(v, w) = −2 Re

〈
w
∣∣Hv

〉
+2 Re

〈
v
∣∣Hw

〉
= 0 . ⊓⊔

We will further discuss symplectic and Hamiltonian aspectsin Section II.4.2 where
we consider the non-canonical Hamiltonian structure of theequations of motion for
parametrized wave functions.

II.1.4 Interpretation as an Action Principle

Taking the imaginary part in (1.2) also yields that every solution of (1.2) makes theaction
functional

S(u) =

∫ t1

t0

〈
u(t)

∣∣∣ i~du
dt

(t) −Hu(t)
〉
dt (1.9) II:action

stationary with respect to variations of paths on the manifold M with fixed end-points,
because by partial integration and the symmetry ofH ,

δS(u) =

∫ t1

t0

(〈
δu(t)

∣∣∣ i~du
dt

(t) −Hu(t)
〉

+
〈
u(t)

∣∣∣ i~dδu
dt

(t) −Hδu(t)
〉)

dt

= −2~

∫ t1

t0

Im
〈
δu(t)

∣∣∣ du
dt

(t) − 1

i~
Hu(t)

〉
dt .

The conditionδS = 0 is the quantum-mechanical analogue of Hamilton’s principle in
classical mechanics. Also note thatS(u) is real if ‖u(t)‖2 = Const., as is seen by partial
integration in (1.9).

II.1.5 Conservation Properties

We know from the Heisenberg equation (I.4.4) that the average 〈A〉 is conserved along
solutions of the Schrödinger equation ifA commutes with the HamiltonianH . For varia-
tional approximations (1.2) there is the following criterion.

Theorem 1.3 (Invariants).Let the self-adjoint operatorA commute with the Hamilto-II:thm:cons
nianH , [A,H ] = 0. If

Au ∈ TuM ∀u ∈ M∩D(A) , (1.10) II:cons

then the average ofA along variational approximationsu(t) ∈ M∩D(A) is conserved:
〈u(t) |A |u(t)〉 = Const .
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Proof. We have

d

dt
〈u |A |u〉 = 2 Re 〈Au | u̇〉 = 2 Re 〈Au | 1

i~
Hu〉 = 〈u | 1

i~
[A,H ] |u〉 = 0

on using (1.2) and (1.10) in the second equality. ⊓⊔
ChoosingA as the identity operator, we obtain the following useful corollary.

Theorem 1.4 (Norm Conservation).The norm is conserved along variational approxi-II:thm:norm
mations ifM contains rays, that is, withu ∈ M alsoαu ∈ M for all α > 0.

Proof. The stated condition impliesu ∈ TuM for u ∈ M, and hence the result follows
from Theorem 1.3. ⊓⊔

II.1.6 An A Posteriori Error Bound

A simple but useful general error bound for variational approximations can be given in
terms of the distance dist

(
1
i~Hu, TuM

)
in the Hilbert space norm of1i~Hu along the

variational approximationu(t) to the corresponding tangent space. The error bound isa
posteriori in that it is in terms of the approximationu(t) rather than the exact wave func-
tion ψ(t). This abstract result will be used in Sections II.4 (for Gaussian wave packets),
III.1 (for spectral discretizations) and III.2 (for the Lanczos method).

Theorem 1.5 (Error Bound for Variational Approximations). If u(0) = ψ(0) ∈ M,II:thm:apost
then the error of the variational approximation is bounded by

‖u(t) − ψ(t)‖ ≤
∫ t

0

dist

(
1

i~
Hu(s), Tu(s)M

)
ds . (1.11) II:apost

Proof. We subtract (1.1) from (1.5), so that

d

dt
(u− ψ) =

1

i~
H(u− ψ) − P⊥(u)

1

i~
Hu with P⊥(u) = I − P (u) .

Multiplying with u− ψ and taking the real part gives

‖u− ψ‖ · d
dt

‖u− ψ‖ =
1

2

d

dt
‖u− ψ‖2 = Re

〈
u− ψ | d

dt
(u− ψ)

〉

= Re
〈
u− ψ | − P⊥(u)

1

i~
Hu
〉
≤ ‖u− ψ‖ · ‖P⊥(u)

1

i~
Hu‖ .

Dividing by ‖u− ψ‖, integrating from0 to t and noting

dist
( 1

i~
Hu, TuM

)
=
∥∥∥P⊥(u)

1

i~
Hu
∥∥∥ =

∥∥∥ du
dt

− 1

i~
Hu
∥∥∥

then yields the error bound (1.11). ⊓⊔
For the error in the average of an observableA along the variational approximation we
note the bound
∣∣〈u |A |u〉− 〈ψ |A |ψ〉

∣∣ =
∣∣〈u−ψ |Au〉+ 〈Aψ |u−ψ〉

∣∣ ≤ ‖u−ψ‖ ·
(
‖Au‖+ ‖Aψ‖

)
.
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II.2 Adiabatic / Born–Oppenheimer Approximation

In the following three sections we turn to basic examples of variational approximation,
which take us in steps from the full molecular Schrödinger equation down to classical
molecular dynamics. We begin with the adiabatic approximation that separates the motion
of heavy nuclei and light electrons.

II.2.1 Electronic Schrödinger Equation

We return to the molecular Hamiltonian (I.5.5), viz.,

Hmol = TN + Te + V . (2.1) II:Hmol

In a first step we ignore the contribution from the kinetic energy of the nuclei,TN (vaguely
motivated by the fact thatMn ≫ m), and work with the electronic Hamiltonian

He(x) = Te + V (x, ·) , (2.2) II:He

which acts on functions of the electronic coordinatesy = (y1, . . . , yL) and depends para-
metrically on the nuclear coordinatesx = (x1, . . . , xN ). We consider the electronic struc-
ture problem, the Schrödinger eigenvalue problem

He(x)Φ(x, ·) = E(x)Φ(x, ·) , (2.3) II:E

typically for the smallest eigenvalue, the ground state energy. Actually computing eigen-
values and eigenfunctions of the electronic Schrödinger equation is the primary concern
of computatonal quantum chemistry; see, e.g., Szabo & Ostlund (1996), and from a more
mathematical viewpoint Le Bris (2003). Here we just supposethat this problem is solved
in some satisfactory way.

We fix an eigenfunctionΦ(x, ·) of He(x) corresponding to the eigenvalueE(x), and
assume thatΦ(x, y) is of unitL2 norm as a function ofy and depends smoothly onx. For
fixed nuclear coordinatesx, the solution of thetime-dependent electronic Schrödinger
equation

i~
∂Ψe
∂t

= He(x)Ψe (2.4) II:elec-tdse

with initial dataψ0(x)Φ(x, ·) is given by

Ψe(x, y, t) = e−iE(x)t/~ψ0(x) · Φ(x, y) . (2.5) II:elec-tdse-sol

II.2.2 Schrödinger Equation for the Nuclei on an Electronic Energy
Surface

Equation (2.5) motivates theadiabatic approximationto the molecular Schrödinger equa-
tion, which is the variational approximation on
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M = {u ∈ L2
x,y : u(x, y) = ψ(x)Φ(x, y), ψ ∈ L2

x} . (2.6) II:M-ad

HereL2
x = L2(R3N ) denotes the Lebesgue space of square integrable functions depend-

ing only on the nuclear coordinatesx, andL2
x,y = L2(R3N × R3L) is theL2 space of

functions depending on both nuclear and electronic coordinates. Note that hereM is a
complex linear space so thatTuM = M for all u ∈ M. As we show below, the Dirac-
Frenkel variational principle (1.2) then leads to aSchr̈odinger equation for the nuclei on
the electronic energy surfaceE:

i~
∂ψ

∂t
= HNψ with HN = TN + E +B1 +B2 , (2.7) II:nuc

B1 =

N∑

n=1

~

Mn
Im 〈∇xnΦ |Φ〉L2

y
· pn , B2 =

N∑

n=1

~2

2Mn
‖∇xnΦ‖2

L2
y
,

with pn = −i~∇xn, where∇xn is the gradient operator with respect to the variables
xn. The HamiltonianHN acts on functions of only the nuclear coordinatesx, with the
electronic eigenvalueE as a potential. The last two termsB1 andB2 contain derivatives
of the electronic wave functionΦ with respect to the nuclear coordinatesx. They are
usually neglected in computations, first because they are expensive to compute or simply
not available and second by the formal argument – to be taken with caution – that they
carry the large massesMn in the denominator and are of lower differentiation order than
the kinetic energy term. The resulting simplified approximation with the Hamiltonian

HBO = TN + E (2.8) II:HBO

is known as thetime-dependent Born–Oppenheimer approximation. It describes the mo-
tion of the nuclei as driven by the potential energy surfaceE of the electrons. It underlies
the vast majority of computations in molecular dynamics.

The termB2 can indeed be safely neglected since it can be shown that thisomis-
sion introduces an error that is of the same magnitude as the approximation error in the
adiabatic approximation.

The termB1, known as theBerry connection, vanishes for real eigenfunctionsΦ
and, more generally, it can be made to vanish by a gauge transformationΦ(x, y) →
eiθ(x)Φ(x, y) with θ satisfying∇xnθ(x) = −Im 〈∇xnΦ |Φ〉L2

y
. This transformation of

Φ changesψ(x, t) → e−iθ(x)ψ(x, t). Note thatθ is uniquely determined up to a con-
stant ifΦ is indeed a smooth function ofx on all of R3N , but is only locally uniquely
determined ifΦ is a differentiable function ofx only on a domain that is not simply con-
nected. In the latter case,B1 can cause physical effects that are not retained in the model
otherwise; see the extensive literature on Berry’s phase, starting with Berry (1984) and
Simon (1983).

Derivation of (2.7):We note that foru(x, y) = ψ(x)Φ(x, y) we have

TNu = −
N∑

n=1

~2

2Mn

(
∆xnψ · Φ+ 2∇xnψ · ∇xnΦ+ ψ ·∆xnΦ

)
,
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and recall that‖Φ(x, ·)‖2
L2

y
= 1 for all x. We then obtain from (1.2) withv(x, y) =

ϕ(x)Φ(x, y) for arbitraryϕ ∈ L2
x that

〈
ϕ
∣∣∣ i~∂ψ

∂t
− Eψ +

N∑

n=1

~2

2Mn

(
∆xnψ + 2 〈∇xnΦ |Φ〉L2

y
· ∇xnψ

− 〈∇xnΦ | ∇xnΦ〉L2
y
ψ
)〉

L2
x

= 0 .

On noting that0 = ∇xn‖Φ‖2
L2

y
= 2 Re〈∇xnΦ |Φ〉L2

y
, we obtain (2.7). ⊓⊔

II.2.3 Semi-Classical Scaling
II:subsec:semi-classical

One property to the success of the adiabatic approximation is the smallness of the mass
ratio of electrons and nuclei,

ε2 =
m

M
≪ 1 (2.9) II:eps

withM = minnMn. For ease of presentation we assume in the following that themasses
of the nuclei are all equal:Mn = M for all n. In atomic units (~ = 1, m = 1, r = 1,
e = 1) and with the small parameterε of (2.9), the molecular Hamiltonian then takes the
form

Hε
mol = −ε2

2
∆x +He(x) with He(x) = −1

2
∆y − V (x, ·) . (2.10) II:H-eps

We are interested in solutions to the Schrödinger equationof bounded energy, and in
particular of bounded kinetic energy

〈Ψ | − ε2

2
∆x |Ψ〉 =

1

2
‖ε∇xΨ‖2 = O(1) .

For a wavepacketeip·xa(x) this condition corresponds to a momentump ∼ ε−1 and
hence to a velocityv = p/M ∼ ε. Motion of the nuclei over a distance∼ 1 can thus be
expected on a time scaleε−1. We therefore rescale time

t→ t/ε ,

so that with respect to the new time nuclear motion over distances∼ 1 can be expected
to occur at time∼ 1. The molecular Schrödinger equation in the rescaled time then takes
the form

iε
∂Ψ

∂t
= Hε

molΨ . (2.11) II:schroed-eps

The Schrödinger equation (2.7) for the nuclei becomes

iε
∂ψ

∂t
= Hε

Nψ with Hε
N = −ε2

2
∆x + E + εB1 + ε2B2 , (2.12) II:nuc-eps

B1 = Im 〈∇xΦ |Φ〉L2
y
· p , B2 =

1

2
‖∇xΦ‖2

L2
y
,

with p = −iε∇x. We are interested in solutions over timest = O(1).
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x
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δ
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E = E0
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E3

Fig. 2.1.Spectral gap.

II.2.4 Spectral Gap Condition

A small error of the adiabatic approximation will be seen to be caused by two proper-
ties: in addition to the smallness of the mass ratioε2 = m/M , we require a separation
of the eigenvalueE(x) from the remainder of the spectrumσ(He(x)) of the electronic
HamiltonianHe(x),

dist
(
E(x), σ(He(x)) \ {E(x)}

)
≥ δ > 0 , (2.13) II:gap

uniformly for all x in a region where the wavefunction remains approximately local-
ized. We will give a result on the approximation error in the situation of a globally
well-separated single eigenvalueE(x), where (2.13) is assumed to hold uniformly for
all x ∈ R3N .

Remark.It is known that the adiabatic approximation generally breaks down near cross-
ings of eigenvalues. A remedy then is to enlarge the approximation space by including
several energy bands that are well separated from the remaining ones in the region of
physical interest, e.g., using

M = {u ∈ L2
x,y : u(x, y) = ψ1(x)Φ1(x, y) + ψ2(x)Φ2(x, y), ψ1, ψ2 ∈ L2

x} , (2.14) II:M-ad-2

whereΦ1(x, ·), Φ2(x, ·) span an invariant subspace of the electronic HamiltonianHe(x).
The variational approximation onM then leads to a system of coupled Schrödinger equa-
tions:



II.2 Adiabatic / Born–Oppenheimer Approximation 29

i~
∂ψ

∂t
= TNψ +B1ψ +B2ψ + V ψ for ψ =

(
ψ1

ψ2

)
(2.15) II:schrod-system

with the matrix-valued potential

V =

(
V11 V12

V21 V22

)
with Vij(x) = 〈Φi(x, ·) |He(x) |Φj(x, ·)〉L2

y
(2.16) II:matrix-potential

and with the diagonal operatorsBj =

(
B1
j 0

0 B2
j

)
, whereBkj are defined asBj in (2.7)

with Φk instead ofΦ.
The non-adiabatic solution behaviour near eigenvalue crossings has attracted much

attention in recent years; see, e.g., Baer & Billing (2002),Domcke, Yarkony & Köppel
(2004), and Lasser & Teufel (2005).

II.2.5 Approximation Error

We derive an error bound of the adiabatic approximation thatworks for a modified Hamil-
tonian where the Coulomb interactions of the nuclei are mollified to smooth bounded
potentials. We assume

‖∇xV (x, y)‖ ≤ CV for x ∈ R
3N , y ∈ R

3L (2.17) II:V-bound

and consider initial data on the approximation spaceM of (2.6),

Ψ0(x, y) = ψ0(x)Φ(x, y) with ‖Hε
Nψ0‖ ≤ C0 , ‖ψ0‖ = 1 . (2.18) II:init-bound

We consider the adiabatic approximationu(t) = u(·, ·, t), with initial dataΨ0, determined
by the time-dependent variational principle:

∂u

∂t
∈ M such that

〈
v
∣∣∣ ∂u

∂t
− 1

iε
Hε

molu
〉

= 0 ∀ v ∈ M . (2.19) II:qvar-adi

We know already that
u(x, y, t) = ψ(x, t)Φ(x, y) , (2.20) II:u-psi-Phi

whereψ(x, t) is the solution of the nuclear Schrödinger equation (2.12)with initial
dataψ0(x). This is compared with the exact solutionΨ(t) = Ψ(·, ·, t) of the molecu-
lar Schrödinger equation (2.11) with initial dataΨ0(x, y) = ψ0(x)Φ(x, y).

Theorem 2.1 (Space-Adiabatic Theorem, Teufel 2003).Under the above conditions,II:thm:ad
the error of the adiabatic approximation is bounded by

‖u(t) − Ψ(t)‖ ≤ C (1 + t) ε for t ≥ 0 ,

whereC is independent ofε and t and initial data satisfying (2.18), but depends on the
gapδ of (2.13) (uniform forx ∈ R3N ), on bounds of partial derivatives with respect to
x up to third order of the eigenfunctionsΦ, and on the boundsCV of (2.17) andC0 of
(2.18).
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Teufel (2003) gives a more general result, including the case of higher-dimensional in-
variant subspaces as in (2.14), and a wealth of related theory. In the global version stated
above, the result remains valid for the time-dependent Born–Oppenheimer approximation
(2.8), with the same proof after eliminatingB1 by the gauge transformation discussed
after (2.8). This is no longer true for local versions of the result where the eigenfunction
Φ is defined only on a domain that is not simply connected.

The result is also related to the time-adiabatic theorem of Born & Fock (1928) and
Kato (1950), which states that in a quantum system with a slowly time-varying Hamilto-
nian a wave function that is an eigenfunction initially, approximately remains an eigen-
function of the Hamiltonian at any instant for long times.

Proof. We letH = Hε
mol for brevity, so thatΨ(t) is a solution to

iε
∂Ψ

∂t
= HΨ .

With the orthogonal projectionP ontoM, we reformulate (2.19) as

iε
∂u

∂t
= Ku with K = PHP ∗ ,

noting thatK is a self-adjoint operator onM. We then haveu(t) = e−itK/εΨ0 =
Pe−itK/εΨ0 ∈ M , and by the variation-of-constants formula foriε ∂∂t (u − Ψ) =
H(u− Ψ) − (H −K)u,

u(t) − Ψ(t) = − 1

iε

∫ t

0

e−i(t−s)H/ε(H −K)u(s) ds

= − 1

iε

∫ t

0

e−i(t−s)H/ε(H −K)Pe−isK/εΨ0 ds .

We note that(H − K)P = P⊥HP (with P⊥ = I − P the complementary orthogo-
nal projection). The key idea is now to writeP⊥HP essentially as a commutator with
H , which becomes possible by the gap condition (2.13). Lemma 2.2 below tells us that
P⊥HP = ε[H,G] + ε2R with operatorsG andR that are bounded independently ofε
in appropriate norms as stated there. The remainder termε2R immediately gives anO(ε)
bound on time intervals of lengthO(1) as desired. We then have

u(t) − Ψ(t) = ie−itH/ε
∫ t

0

eisH/ε [H,G] e−isH/ε · eisH/ε e−isK/ε Ψ0 ds+ O(tε) ,

where we observe the key relation to gain a factorε,

eisH/ε [H,G]e−isH/ε = −iε d
ds

(
eisH/εGe−isH/ε

)
.

We now use partial integration and note

d

ds

(
eisH/ε e−isK/εΨ0

)
=
i

ε
eisH/ε (H −K)P e−isK/εΨ0 .
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Expressing once again(H −K)P = P⊥HP , we obtain

u(t) − Ψ(t) = εGe−itK/ε Ψ0 − ε e−itH/εGΨ0

− i

∫ t

0

e−i(t−s)H/εGP⊥HP e−isK/εΨ0 ds+ O(tε) . (2.21) II:ad-error-formula

The result now follows with the estimates of Lemmas 2.2 and 2.3. ⊓⊔

It remains to state and prove the two lemmas to which we referred in the above proof.
They use scaled Sobolev norms of functions onR3N or R3N ×R3L. The squares of these
norms are defined by

‖ϕ‖2
1,ε = ‖ε∇xϕ‖2 + ‖ϕ‖2 ,

‖ϕ‖2
2,ε = ‖ε2∆xϕ‖2 + ‖ϕ‖2 ,

where the norm on the right-hand side is theL2 norm (theL2
x orL2

x,y norm, as appropri-
ate).

II:lem:adG Lemma 2.2. The projected HamiltonianP⊥HP can be written as

P⊥HP = ε[H,G] + ε2R (2.22) II:G

where the operatorsG andR are bounded by

‖GΨ‖ ≤ C1 ‖Ψ‖1,ε , ‖RΨ‖ ≤ C2 ‖Ψ‖2,ε (2.23) II:GR-bound

for all Ψ ∈ C∞
0 (R3N × R3L). Moreover,P⊥HP is bounded by

‖P⊥HPΨ‖1,ε ≤ Cε ‖Ψ‖2,ε . (2.24) II:PHP-bound

Proof. In the following we write∇ = ∇x and∆ = ∆x for the gradient and Laplacian
with respect to the nuclear coordinatesx.

(a) We begin by computingP⊥HP forH = − ε2

2 ∆+He. The orthogonal projection
P ontoM is fibered as

(PΨ)(x) = P (x)Ψ(x, ·) ,
whereP (x) is theL2

y-orthogonal projection onto the span of the eigenfunctionΦ(x, ·) of
the electronic HamiltonianHe(x). We have, forη ∈ L2

y,

P (x)η = 〈Φ(x, ·) | η〉Φ(x, ·) ,

with the inner product ofL2
y. SinceΦ(x, ·) spans an invariant subspace ofHe(x), we have

P⊥(x)He(x)P (x) = 0, and hence, forΨ ∈ L2
x,y,

P⊥HPΨ = −ε2

2
P⊥∆(PΨ) = −ε2P⊥(∇P ) · ∇Ψ − ε2

2
P⊥(∆P )Ψ .
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For the first term on the right-hand side we note, using(∇P )P⊥Ψ = 〈∇Φ |P⊥Ψ〉Φ and
P⊥Φ = 0,

Q := −P⊥(∇P ) = −P⊥(∇P )P .

We thus obtain
P⊥HP = εQ · ε∇ + ε2R0 , (2.25) II:PHP

whereR0(x) = − 1
2P (x)⊥(∆P )(x) is bounded onL2

y uniformly in x ∈ R3N , provided
that the eigenfunctionΦ has bounded derivatives with respect tox. We also note that
(2.25) implies the bound (2.24).

(b) We constructF (x) such that

[He(x), F (x)] = Q(x) . (2.26) II:F

Writing He as an operator matrix with blocks corresponding toM andM⊥,

He =

(
E 0
0 H⊥

e

)
with H⊥

e = P⊥HeP
⊥ ,

we can rewrite (2.26) as
[(

E 0
0 H⊥

e

)
,

(
F11 F12

F21 F22

)]
=

(
0 0
Q21 0

)

which is solved by settingF11 = 0, F12 = 0, F22 = 0 and determiningF21 = P⊥FP
from

H⊥
e F21 − F21E = Q21 .

By the spectral gap condition (2.13), this equation has a unique solution, and we thus
obtain the solution to (2.26) as

F (x) =
(
H⊥
e (x) − E(x)

)−1
Q(x) .

This is bounded inL2
y uniformly for x ∈ R3N by the uniform gap condition, and so are

∇F (x) and∆F (x).
(c) We next show that the commutator ofH = − ε2

2 ∆+He with F is a small pertur-
bation to[He, F ] = Q. For this we note that

[
−ε2

2
∆,F

]
= −ε∇F · ε∇− ε2

2
∆F (x) ,

so that
[H,F ] = Q− εR1 , (2.27) II:HF-comm

whereR1 is bounded by‖R1Ψ‖ ≤ c1‖Ψ‖1,ε for all Ψ .
(d) We set

G = F · ε∇ (2.28) II:G-def



II.3 Separating the Particles: Self-Consistent Field Methods 33

and show that the commutator withH equalsQ · ε∇ up to a small perturbation. By (2.27)
we have, using the Leibniz rule of the commutator,

[H,G] = [H,F ] · ε∇ + F · [H, ε∇]

= Q · ε∇− εR1 · ε∇− εF · ∇V .

For the term with the potentialV we recall assumption (2.17), which bounds∇V . The
termQ · ε∇ is the same as in (2.25), and hence we obtain the desired result (2.22) with
R = R0 +R1 · ε∇+ F · ∇V . The bounds (2.23) are immediate from the construction of
the operatorsG andR. ⊓⊔

We also need the following regularity result in order to use (2.24) in (2.21).

II:lem:adK Lemma 2.3. In the situation of Theorem 2.1, we have

‖u(t)‖2,ε ≤ C
(
‖Hε

Nψ0‖ + 1
)

for t ≥ 0 .

Proof. We use the bounds, forψΦ ∈ M,

‖ψΦ‖2,ε ≤ c ‖ψ‖2,ε ≤ C
(
‖Hε

Nψ‖ + ‖ψ‖
)
,

for which we omit the straightforward derivation. By (2.20), the adiabatic approximation
is given asu(t) =

(
e−itH

ε
N/εψ0

)
Φ, and the above inequality thus yields

‖u(t)‖ ≤ C
(
‖Hε

Ne
−itHε

N/εψ0‖ + ‖ψ0‖
)

= C
(
‖Hε

Nψ0‖ + 1
)
,

which is the stated bound. ⊓⊔

II.3 Separating the Particles: Self-Consistent Field
Methods

The remaining high dimensionality requires further model reductions. The many-body
wave function is approximated by appropriate linear combinations of tensor products of
single-particle wave functions. The simplest case arises in approximating the dynamics
of the nuclei by a single tensor product, which yields thetime-dependent Hartree method.
This model describes the motion of each particle driven by the mean field of the other
particles.

Its antisymmetrized version, suitable for electron dynamics, is known as thetime-
dependent Hartree–Fock method. The equations of motion for the orbitals were derived by
Dirac (1930) in what is the historically first application ofthe time-dependent variational
principle. This method is the time-dependent counterpart of the stationary Hartree–Fock
method, which uses antisymmetrized products of orbitals toapproximate eigenfunctions
of the Schrödinger operator and is the basic approach to electronic structure computations;
see, e.g., Szabo & Ostlund (1996).
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Taking linear combinations of tensor products or their antisymmetrizations yields the
multi-configurationtime-dependent Hartree and Hartree–Fock methods, put forward by
Meyer, Manthe & Cederbaum (1990). In this section we describe these various methods,
derive the nonlinear equations of motion and discuss some oftheir properties.

The model reductions of this section can be viewed aslow-rank approximationsto
the high-dimensional multi-particle wave function. Independently of the developments in
quantum mechanics, low-rank approximations to huge matrices and tensors have been
widely used as computationally viable approximations in many other fields including, for
example, information retrieval, image compression, and option pricing. It seems, however,
that using the time-dependent variational principle for low-rank approximations in areas
outside quantum mechanics has been considered only recently (Koch & Lubich 2007,
Nonnenmacher & Lubich 2007, Jahnke & Huisinga 2007).

II.3.1 Time-Dependent Hartree Method (TDH)
II:subsec:tdh

We consider the Schrödinger equation for the nuclei obtained from the Born–Oppenheiner
approximation,

i~
∂ψ

∂t
= Hψ , H = T + V (3.1) II:schrod-nuc-V

with kinetic energyT = −∑N
n=1

~
2

2Mn
∆xn and a potentialV (x1, . . . , xN ) (as an ap-

proximation to an electronic energy surfaceE(x1, . . . , xN )). We assume that the domain
D(V ) containsD(T ) = H2(R3N ).

Hartree Products. We look for an approximation to the wave function of the tensor
product form

ψ(x1, . . . , xN , t) ≈ a(t)ϕ1(x1, t) . . . ϕN (xN , t)

with a scalar phase factora(t) and with single-particle functions(or molecular or-
bitals) ϕn(xn, t). We thus consider the variational approximation (1.2) on the infinite-
dimensional manifold

M = {u ∈ L2(R3N ) : u 6= 0, u = aϕ1 ⊗ . . .⊗ ϕN , a ∈ C, ϕn ∈ L2(R3)} (3.2) II:hartree-mf

(or instead we might consider tensor products of3N functions inL2(R)). The representa-
tion ofu ∈ M asu = aϕ1 ⊗ . . .⊗ϕN is not unique: for any choice of complex numbers
cn 6= 0, u remains unaltered under the transformation

ϕn → cnϕn , a→ a

c1 . . . cN
. (3.3) II:hartree-trf

Tangent Functions.Although we do not have a unique representation of functionsin
the Hartree manifoldM, we can obtain a unique representation of tangent functions.
This is what matters in deriving the equations of motion for the single-particle functions.
Consideru = aϕ1 ⊗ . . .⊗ϕN with a of unit modulus and allϕn of unitL2 norm. Every
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tangent functioṅu ∈ TuM (for the moment,̇u is just a symbol for any tangent function)
is of the form

u̇ = ȧ ϕ1 ⊗ . . .⊗ ϕN + a ϕ̇1 ⊗ ϕ2 ⊗ . . .⊗ ϕN + . . .+ aϕ1 ⊗ . . .⊗ ϕN−1 ⊗ ϕ̇N (3.4) II:hartree-tangent

whereȧ ∈ C andϕ̇n ∈ L2. These turn out to be uniquely determined byu̇ and the fixed
a, ϕ1, . . . , ϕN if we impose thegauge condition

〈ϕn | ϕ̇n〉 = 0 . (3.5) II:hartree-gauge

Indeed, taking the inner product of both sides of (3.4) withu = aϕ1 ⊗ . . . ⊗ ϕN and
using (3.5) and‖ϕn‖ = 1 anda = 1/a, determineṡa as

ȧ = 〈u | u̇〉 a . (3.6) II:hartree-adot-0

Taking the inner product with the function in which thenth factorϕn in u is replaced by
someL2 functionϑn, viz., with aϕ1 ⊗ . . . ⊗ ϑn ⊗ . . . ⊗ ϕN ∈ TuM, determinesϕ̇n
uniquely by the equation

〈ϑn | ϕ̇n〉 + aȧ〈ϑn |ϕn〉 = 〈aϕ1 ⊗ . . .⊗ ϑn ⊗ . . .⊗ ϕN | u̇〉 ∀ϑn ∈ L2 . (3.7) II:hartree-phidot-0

Equations of Motion for the Single-Particle Functions.We now consider the variational
approximation (1.2) on the Hartree manifoldM, viz.,

〈
v
∣∣∣ du
dt

− 1

i~
Hu
〉

= 0 ∀ v ∈ TuM . (3.8) II:hartree-qvar

Applying the above argument witḣu = du/dt ∈ TuM and using (3.8) to replace
u̇ by 1

i~Hu in (3.6) and (3.7), we obtain evolution equations for the factors in u =
aϕ1 ⊗ . . .⊗ ϕN :

da

dt
=
〈
u
∣∣∣ 1

i~
Hu
〉
a

〈
ϑn

∣∣∣ ∂ϕn
∂t

〉
=
〈
aϕ1 ⊗ . . .⊗ ϑn ⊗ . . .⊗ ϕN

∣∣∣ 1

i~
Hu
〉

(3.9) II:hartree-weak-eom

−
〈
u
∣∣∣ 1

i~
Hu
〉
〈ϑn |ϕn〉 ∀ϑn ∈ L2 .

With the total energyκ = 〈u |H |u〉, which by Theorem 1.1 is constant in time, and with
themean-field Hamiltonianfor thenth particle,

〈H〉n = 〈ψn |H |ψn〉 with ψn =
⊗

j 6=n
ϕj (3.10) II:meanfield-H

(the inner product on the right-hand side is over all variables exceptxn), the equations of
motion become the trivial linear constant-coefficient differential equationi~ da/dt = κa
and
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i~
∂ϕn
∂t

= 〈H〉nϕn − κϕn . (3.11) II:hartree-phidot-H

Multiplying with 1
i~ϕn and noting

d

dt
‖ϕn‖2 = 2 Re

〈
ϕn

∣∣∣ ∂ϕn

∂t

〉
= 2 Re

〈
ϕn

∣∣∣ 1

i~

(
〈H〉nϕn − κϕn

)〉
= 0 ,

we see thatϕn indeed remains of unit norm, as was assumed in the derivation.
The last termκϕn in (3.11) can be dropped if we rescaleϕj → e−iκt/~ϕj . For a

HamiltonianH = T + V as in (3.1), we obtain for allϑn ∈ L2(R3) that are orthogonal
to ϕn, 〈

ϕ1 ⊗ . . .⊗ ϑn ⊗ . . .⊗ ϕN

∣∣∣Tu
〉

=
〈
ϑn

∣∣∣ − ~
2

2Mn
∆xnϕn

〉
,

and hence for suchϑn we have by (3.9)

〈
ϑn

∣∣∣ i~ ∂ϕn
∂t

+
~

2

2Mn
∆xnϕn − 〈V 〉nϕn

〉
= 0 ,

where the mean-field potential〈V 〉n is defined in the same way as in (3.10) withV instead
of H . It follows that the right-hand expression in the inner product is a multiple ofϕn.
This term adds tȯu = du/dt in (3.4) only a scalar multiple ofu and hence yields only a
modified phase factora in u. Let us summarize the result obtained.

Theorem 3.1 (Time-Dependent Hartree Method).For a Hamiltonian (3.1), the varia-
tional approximation on the Hartree manifold (3.2), for initial datau(x1, . . . , xN , 0) =
ϕ1(x1, 0) . . . ϕN (xN , 0) withϕn(·, 0) of unitL2 norm, is given as

u(x1, . . . , xN , t) = a(t)ϕ1(x1, t) . . . ϕN (xN , t) ,

where|a(t)| = 1 andϕn(xn, t) are solutions to the system of nonlinear partial differential
equations

i~
∂ϕn
∂t

= − ~2

2Mn
∆xnϕn + 〈V 〉nϕn . (3.12) II:hartree-phidot

This holds on time intervals0 ≤ t ≤ t on which a strong solution to this system exists,
that is, forϕn ∈ C1([0, t], L2(R3)) ∩ C([0, t], H2(R3)). ⊓⊔

The mean-field potentials〈V 〉n are high-dimensional integrals. Their computation is
reduced to low-dimensional integrals for potentials that are (or more often, are approxi-
mated by) a linear combination of tensor products,

V (x1, . . . , xN ) =

r∑

k=1

ck v
(1)
k (x1) · . . . · v(N)

k (xN ) , (3.13) II:product-V

for which

〈V 〉n =

r∑

k=1

ck
∏

j 6=n

∫

R3

v
(j)
k (xj) |ϕj(xj)|2 dxj .
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Equations (3.12) look like usual Schrödinger equations, but since the mean-field po-
tential 〈V 〉n depends on the single-particle functions of the other particles, we obtain a
coupled system of low-dimensionalnonlinearpartial differential equations. A strong so-
lution to (3.12) exists globally for all timest ≥ 0 for example in the case of a smooth
bounded potential with bounded derivatives. This is shown by Picard iteration in the
Sobolev spaceH2(R3)N on the integrated equations

ϕn(t) = e−itTn/~ϕn(0) +

∫ t

0

e−i(t−s)Tn/~ 〈V 〉n(s)ϕn(s) ds ,

whereTn = − ~
2

2Mn
∆xn . By the same argument, the solution then hasHk regularity for

arbitraryk whenever the initial data is inHk.

Remark 3.2 (Principal Bundle Structure). On the Hartree manifoldM of (3.2),y =
(a, ϕ1, . . . , ϕN ) are not coordinates, but the underlying mathematical structure here and
in the following subsections is that of aprincipal bundle, which is a familar concept in
differential geometry that we now describe. There is a mapχ : N → M from a manifold
N ontoM, so that everyu ∈ M can be represented, though not uniquely, as

u = χ(y) for somey ∈ N .

(We haveχ(y) = aϕ1⊗ . . .⊗ϕN on the Hartree manifold.) The mapχ is invariant under
the action of a Lie groupG onN , which we denote by· : G×N → N :

χ(g · y) = χ(y) ∀ g ∈ G , y ∈ N .

In the Hartree method, the group is the componentwise multiplicative groupG = (C∗)N

(with C∗ = C \ {0}), and the action is given by (3.3).
Moreover, there is agauge mapγ, which at everyy ∈ N associates to a tangent vector

ẏ ∈ TyN an elementγ(y)ẏ in the Lie algebrag of G (g is the tangent space at the unit
element ofG). The linear mapγ(y) : TyN → g is such that the extended derivative map,
with u = χ(y),

TyN → TuM× g : ẏ 7→
(
dχ(y)ẏ, γ(y)ẏ

)
is an isomorphism.

Hence, under the gauge conditionγ(y)ẏ = 0 (or with any fixed element ofg instead of
0), ẏ ∈ TyN is determined uniquely byy andu̇ ∈ TuM. In the Hartree method, a gauge

map is given byγ(y)ẏ =
(
〈ϕn | ϕ̇n〉

)N
n=1

∈ CN .

II.3.2 Time-Dependent Hartree–Fock Method (TDHF)
II:subsec:tdhf

Slater Determinants.For a system ofN identical fermions1 the wave function is anti-
symmetric (see Sect. I.5.2) and we wish to retain this property in the approximation. We

1 Typically, this refers to electrons. In the notation of Sect. I.5.3, their coordinates arey1, . . . , yL,
but we will denote them byx1, . . . , xN in this subsection and keep in mind that thexn are not
coordinates of nuclei here.
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therefore look for an approximate wave function in an antisymmetrized tensor product
form, that is, as aSlater determinant

ψ(x1, . . . , xN , t) ≈ a(t)
1√
N !

det
(
ϕn(xj , t)

)N
n,j=1

with a scalar phase factora(t) and with orbitalsϕn(x, t) that are time-dependent functions
of x ∈ R3. In the following we write the scaled determinant as the wedge product

ϕ1 ∧ . . . ∧ ϕn =
1√
N !

∑

σ∈SN

sign(σ)ϕσ(1) ⊗ . . .⊗ ϕσ(N) ,

where the sum is over all permutations of{1, . . . , N}. We consider the variational ap-
proximation (1.2) on the manifold

M = {u ∈ L2(R3N ) : u 6= 0, u = aϕ1 ∧ . . . ∧ ϕN , a ∈ C, ϕn ∈ L2(R3)} . (3.14) II:hf-mf

The representation ofu ∈ M asu = aϕ1 ∧ . . . ∧ ϕN again is not unique:u remains
unaltered under the transformation by any invertibleN ×N matrix,A ∈ GL(N), by




ϕ1

...
ϕN


→ A




ϕ1

...
ϕN


 , a→ a

det(A)
.

We may therefore choose to work with orthonormal orbitals:

〈ϕn |ϕj〉 = δnj for all n, j . (3.15) II:hf-orth

In particular, we then have‖u‖ = |a|.
Tangent Functions.Consideru = aϕ1 ∧ . . . ∧ ϕN with a of unit modulus and with
orthonormal orbitalsϕn. Every tangent functioṅu ∈ TuM is of the form

u̇ = ȧ ϕ1 ∧ . . . ∧ ϕN + a ϕ̇1 ∧ ϕ2 ∧ . . . ∧ ϕN + . . .+ aϕ1 ∧ . . . ∧ ϕN−1 ∧ ϕ̇N (3.16) II:hf-tangent

whereȧ ∈ C andϕ̇n ∈ L2. These turn out to be uniquely determined byu̇ and the fixed
a, ϕ1, . . . , ϕn if we impose the gauge condition

〈ϕn | ϕ̇j〉 = 0 for all n, j . (3.17) II:hf-gauge

Indeed, taking the inner product of both sides of (3.4) withu = aϕ1∧ . . .∧ϕN and using
(3.15) and (3.17) anda = 1/a, determineṡa again as

ȧ = 〈u | u̇〉 a . (3.18) II:hf-adot-0

Taking the inner product with the function in whichϕn is replaced by someL2 func-
tion ϑn, determinesϕ̇n uniquely by the analogue of (3.7), where now simply the wedge
product replaces the tensor product:
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〈ϑn | ϕ̇n〉 + aȧ 〈ϑn |ϕn〉 = 〈aϕ1 ∧ . . . ∧ ϑn ∧ . . . ∧ ϕN | u̇〉 ∀ϑn ∈ L2 . (3.19) II:hf-phidot-0

Equations of Motion for the Orbitals. The equations of motion for the orbitals in the
variational approximation (1.2) on the Hartree–Fock manifoldM in the weak form there-
fore still are of the same type as in (3.9), where just∧ formally replaces⊗. With the
constant total energyE = 〈u |H |u〉, we have

i~
〈
ϑn

∣∣∣ ∂ϕn
∂t

〉
=
〈
aϕ1∧. . .∧ϑn∧. . .∧ϕN

∣∣Hu
〉
−E

〈
ϑn
∣∣ϕn

〉
∀ϑn ∈ L2 . (3.20) II:hf-weak-eom

To proceed further, we now consider a Hamiltonian composed of identical one- and two-
body Hamiltonians:

H =
N∑

j=1

(
− ~2

2m
∆xj + Uj

)
+
∑

k<ℓ

Wkℓ ≡
N∑

j=1

Sj +
∑

k<ℓ

Wkℓ (3.21) II:hf-H

with identical one-body potentialsUj(x1, . . . , xN ) = U(xj) and identical symmetric
two-body potentials

Wkℓ(x1, . . . , xN ) = W (xk, xℓ) = W (xℓ, xk) .

The situation of primary interest is that of the electronic Schrödinger equation (2.4), where

W (x, y) =
e2

|x− y| (x, y ∈ R
3)

is the Coulomb potential of electron-electron interaction, andU(x) describes the Coulomb
interaction between an electron atx ∈ R3 and all nuclei at fixed positions.

We abbreviate the single-particle operator asS = − ~
2

2m ∆x + U , and writeSj when
it is considered as an operator acting on the variablexj of functions of(x1, . . . , xN ).

We return to (3.20) and consider functionsϑn ∈ L2(R3) that satisfy the orthogonality
condition

〈ϑn |ϕj〉 = 0 for all n, j . (3.22) II:hf-orth-theta

Using the definition of the wedge product and the orthogonality relations (3.15) and (3.22)
we calculate

〈ϕ1 ∧ . . . ∧ ϑn ∧ . . . ∧ ϕN |S1 |ϕ1 ∧ . . . ∧ ϕN 〉 =
1

N
〈ϑn |Sϕn〉 .

Since the same result is obtained forS2, . . . , SN , we obtain

〈
ϕ1 ∧ . . . ∧ ϑn ∧ . . . ∧ ϕN

∣∣∣
N∑

j=1

Sj

∣∣∣ϕ1 ∧ . . . ∧ ϕN
〉

=
〈
ϑn
∣∣Sϕn

〉
. (3.23) II:hf-S

For the two-body interaction we obtain similarly, using in addition the symmetry ofW ,
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〈
ϕ1 ∧ . . . ∧ ϑn ∧ . . . ∧ ϕN

∣∣W12

∣∣ϕ1 ∧ . . . ∧ ϕN
〉

=
2

N(N − 1)

∑

j 6=n

(
〈ϑn ⊗ ϕj |W |ϕn ⊗ ϕj〉 − 〈ϑn ⊗ ϕj |W |ϕj ⊗ ϕn〉

)
,

and the same result for the otherWkℓ. Hence we have

〈
ϕ1 ∧ . . . ∧ ϑn ∧ . . . ∧ ϕN

∣∣ ∑

k<ℓ

Wkℓ

∣∣ϕ1 ∧ . . . ∧ ϕN
〉

=
〈
ϑn
∣∣Knϕn −

∑

j 6=n
Xnjϕj

〉
(3.24) II:hf-W

with theHartree potentialKn and theexchange potentialsXnj given as

Kn(x) =
∑

j 6=n

∫

R3

W (x, y) |ϕj(y)|2 dy (3.25) II:hf-K

Xnj(x) =

∫

R3

W (x, y)ϕj(y)ϕn(y) dy . (3.26) II:hf-X

Substituting (3.23) and (3.24) into (3.20), we thus obtain,for all ϑn ∈ L2(R3) satisfying
the orthogonality relations (3.22),

〈
ϑn

∣∣∣ i~∂ϕn
∂t

− Sϕn −Knϕn +
∑

j 6=n
Xnjϕj

〉
= 0 .

It follows that the right-hand expression in the inner product is in the linear span of
ϕ1, . . . , ϕN . Since adding such a term to∂ϕn/∂t adds tou̇ = du/dt of (3.16) only a
scalar multiple ofu and hence changes only the scalar phase factora, the effect of this
term is put intoa and we set the right-hand expression in the inner product to zero. On
multiplying withϕj and interchangingn andj, we then further obtain

d

dt

〈
ϕn
∣∣ϕj
〉

=
〈
ϕn

∣∣∣ ∂ϕj

∂t

〉
+
〈
ϕj

∣∣∣ ∂ϕn

∂t

〉
= 0 ,

so that the orthonormality relations (3.15) are preserved for all times. Since we know that
the variational approximationu(t) conserves the unit norm, the phase factora(t) then
remains of unit modulus. We summarize the result as follows.

Theorem 3.3 (Time-Dependent Hartree–Fock Method, Dirac 1930). For a Hamilto-
nian (3.21), the variational approximation (1.2) on the Hartree–Fock manifold (3.14), for

initial data u(x1, . . . , xN , 0) = 1√
N !

det
(
ϕn(xj , 0)

)N
n,j=1

with ϕn(·, 0) satisfying the
orthonormality relations (3.15), is given as

u(x1, . . . , xN , t) = a(t)
1√
N !

det
(
ϕn(xj , t)

)N
n,j=1

,

where|a(t)| = 1 andϕn(x, t) are solutions to the system of partial differential equations
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i~
∂ϕn
∂t

= − ~2

2m
∆ϕn + Uϕn +Knϕn −

∑

j 6=n
Xnjϕj , (3.27) II:hf-phidot

which is nonlinear through the Hartree and exchange potentials given by (3.25) and
(3.26). This holds on time intervals0 ≤ t ≤ t on which a strong solution to this sys-
tem exists, that is, forϕn ∈ C1([0, t], L2(R3)) ∩ C([0, t], H2(R3)). The orthonormality
(3.15) of the orbitals is preserved on the whole time interval. ⊓⊔
Comparing (3.27) with the Hartree equations (3.12), we notethat the only, but essential
difference is in the presence of the fermionic exchange termsXnjϕj .

Global existenceof strong solutions to the equations of motion (3.27) in the case of
Coulomb potentials is shown by Chadam & Glassey (1974). The line of their argument
runs as follows: first it is shown by Picard iteration that solutions inH2 exist locally in
time, where the growth in theH2 norm is exponential in terms of a bound of theH1 norm
of the solution. Since theH1 norm of a strong solution can be bounded by the constant
total energy〈H〉, it follows that theH1 norm remains in fact bounded for all times and
theH2 norm grows at worst exponentially.

Spin Orbitals. Electrons are distinguished by their spin which can take thetwo values up
(↑) and down (↓). In a system withK electrons of spin up andN −K electrons of spin
down, the separable approximation with the correct antisymmetry properties is

u = a (ϕ1 ∧ . . . ∧ ϕK) ⊗ (ϕK+1 ∧ . . . ∧ ϕN ) (3.28) II:hf-mf-spin

with a ∈ C, ϕn ∈ L2(R3). The equations of motion for variational approximations of
this type can be derived in the same way as above and turn out tobe identical to (3.27) if
the interpretation of inner products is modified as follows:we extend each orbitalϕn to
a spin orbitalϕ̂n = (ϕn, sn) with spinsn ∈ {↑, ↓}. For any observableA of orbitals we
define

〈ϕ̂n |A | ϕ̂j〉 =

{
〈ϕn |A |ϕj〉 if sn = sj ,

0 else.

With this interpretation of all arising inner products, theequations of motion (3.27) remain
valid for the spin orbitalŝϕn, with non-vanishing exchange terms remaining only between
spin orbitals of the same spin.

As opposed to theunrestrictedHartree-Fock approximation just described, there-
strictedHartree-Fock method in the case of an even numberN of electrons assumes an
equal numberN/2 of electrons with spin up and spin down with the spin orbitals(ϕn, ↑)
and(ϕn, ↓) for n = 1, . . . , N/2, that is, with thesamespatial orbitalϕn for both spin up
and spin down. The approximation to the wave function is thuschosen of the form

u = a (ϕ1 ∧ . . . ∧ ϕN/2) ⊗ (ϕ1 ∧ . . . ∧ ϕN/2) (3.29) II:hf-mf-rhf

in the restricted Hartree-Fock method. For an initial stateof this type, it is seen that this
restricted form is preserved for all times in the equations of motion (3.27) of the unre-
stricted Hartree-Fock method withN/2 electrons of spin up andN/2 electrons of spin
down. Therefore half of the equations can be dropped in this case.
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II.3.3 Multi-Configuration Methods (MCTDH, MCTDHF)
II:subsec:mctdh

Multi-Configurations. We consider again the Schrödinger equation (3.1) for the nuclei,
which are supposed to be distinguishable by their differenttypes or by their well-separated
positions. It is to be expected, and has found ample confirmation in computations, that a
better approximation to the wave function can be obtained byusing a linear combination
of tensor products instead of just a single tensor product, as is done in the time-dependent
Hartree method of Section II.3.1. We therefore consider approximations

ψ(x1, . . . , xN , t) ≈
∑

(j1,...,jN )

aj1,...,jN (t)ϕ
(1)
j1

(x1, t) · · ·ϕ(N)
jN

(xN , t)

≡
∑

J

aJ(t)ΦJ (x, t) . (3.30) II:ansatz1

Here, the multi-indicesJ = (j1, . . . , jN ) vary for jn = 1, . . . , rn, n = 1, . . . , N , the
aJ (t) are complex coefficients depending only ont, and the single-particle functions

ϕ
(n)
jn

(xn, t) depend on the coordinatesxn ∈ R
3 of particlen and on timet. Alternatively,

we might take Hartree products of3N functions depending onxn ∈ R.
This is a model reduction analogous to low-rank approximation of matrices, where a

large system matrix is replaced by a linear combination of rank-1 matricesv ⊗ w, or to
low-rank approximation of tensors by linear combinations of rank-1 tensorsv1⊗. . .⊗vN .

In the multi-configuration time-dependent Hartree(MCTDH) method proposed by
Meyer, Manthe & Cederbaum (1990) and developed further as described by Beck, Jäckle,
Worth & Meyer (2000), the Dirac–Frenkel time-dependent variational principle (1.2) is
used to derive differential equations for the coefficientsaJ and the single-particle func-
tionsϕ(n)

jn
. The MCTDH method determines approximations to the wave function that,

for every timet, lie in the set

M =
{
u ∈ L2(R3N ) : u =

∑

J

aJ ϕ
(1)
j1

⊗ · · · ⊗ ϕ
(N)
jN

with aJ ∈ C, ϕ
(n)
jn

∈ L2(R3)
}

with multi-indicesJ = (j1, . . . , jN ) ranging overjn = 1, . . . , rn. This setM is not a
manifold, but it contains a dense subsetM that is a manifold and is characterized by a
full-rank condition to be given below.

The representation ofu ∈ M by a coefficient tensorA = (aJ ) and single-particle

functionsΦ =
(
ϕ

(n)
jn

)
clearly is not unique: the transformation

ϕ
(n)
jn

→ ϕ̂
(n)
jn

=

rn∑

kn=1

S
(n)
jn,kn

ϕ
(n)
kn
,

aJ → âJ =

r1∑

i1=1

· · ·
rN∑

iN =1

aI(S
(1))−1

i1,j1
· · · (S(N))−1

iN ,jN

yields the same functionu for any choice of nonsingular matricesS(1), . . . , S(N). We
may assume that the orbitalsϕ(n)

jn
corresponding to the same particlen are orthonormal:
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〈ϕ(n)
jn

∣∣ϕ(n)
kn

〉 = δjn,kn , jn, kn = 1, . . . , rn, n = 1, . . . , N . (3.31) ortho1

Tangent Functions.Consider a differentiable path(A(t), Φ(t)) of coefficients and single-
particle functions representing a pathu(t) onM. Then, the derivativėu is of the form

u̇ =
∑

J

ȧJ ΦJ +

N∑

n=1

rn∑

jn=1

ϕ̇
(n)
jn

ψ
(n)
jn

(3.32) delu

with the Hartree productsΦJ =
⊗N

n=1 ϕ
(n)
jn

and with thesingle-hole functions

ψ
(n)
jn

= 〈ϕ(n)
jn

|u〉(n) (3.33) singlehole1

=

r1∑

j1=1

· · ·
rn−1∑

jn−1=1

rn+1∑

jn+1=1

· · ·
rN∑

jN =1

aj1,...,jN
⊗

k 6=n
ϕ

(k)
jk
,

where the superscript(n) on the inner product indicates that theL2 inner product is taken
only with respect to the variablexn, leaving a function depending on all the other variables
xk with k 6= n.

Conversely, thėaJ are uniquely determined bẏu and(A,Φ) if we impose the orthog-
onality condition

〈ϕ(n)
jn

| ϕ̇(n)
kn

〉 = 0 , jn, kn = 1, . . . , rn, n = 1, . . . , N , (3.34) orth-delphi

which together with (3.31) implies

ȧJ = 〈ΦJ | u̇〉 . (3.35) II:aJ

Taking theL2 inner product of (3.32) withψ(n)
in

over all variables exceptxn, as indicated
by the superscript(¬n), then gives

rn∑

jn=1

ρ
(n)
in,jn

ϕ̇
(n)
jn

=
〈
ψ

(n)
in

∣∣∣ u̇−
∑

J

ȧJ ΦJ

〉(¬n)

(3.36) delphi

with the hermitian, positive semi-definitedensity matrices

ρ(n) =
(
ρ
(n)
in,jn

)rn

in,jn=1
given by ρ

(n)
in,jn

:= 〈ψ(n)
in

|ψ(n)
jn

〉(¬n) . (3.37) density

The orthonormality relations (3.31) allow us to express theentries of the density matrices
in terms of the coefficientsaJ :

ρ
(n)
in,jn

=

r1∑

j1=1

· · ·
rn−1∑

jn−1=1

rn+1∑

jn+1=1

· · ·
rN∑

jN=1

āj1,...,jn−1,in,jn+1,...,jNaj1,...,jN . (3.38) density2

Theϕ̇(n)
jn

are thus uniquely determined from (3.36) under thefull-rank conditionthat
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ρ(n) is an invertible matrix for eachn = 1, . . . , N . (3.39) full-rank

(In view of (3.38), a necessary condition for this property is rn ≤∏k 6=n rk.)

The MCTDH manifold. With the above construction of thėaJ andϕ̇(n)
jn

, one can con-
struct local charts on

M =
{
u ∈ L2(R3N ) : u =

∑

J

aJ ϕ
(1)
j1

⊗ · · · ⊗ ϕ
(N)
jN

with aJ ∈ C and

ϕ
(n)
jn

∈ L2(R3) satisfying the orthonormality condition (3.31)

and the full-rank condition (3.39)
}
, (3.40) II:mctdh-mf

making this set an infinite-dimensional manifold, for whichthe tangent space atu ∈ M
consists of the elementṡu of the form (3.32). We also note that‖u‖2 =

∑
J |aJ |2.

Equations of Motion for the Multi-Configuration Time-Depen dent Hartree Method.
The MCTDH method uses the time-dependent variational principle (1.2) on this approxi-
mation manifoldM. The equations of motion are thus obtained by substituting1

i~Hu for
u̇ in (3.35) and (3.36), and so we have the following result.

Theorem 3.4 (MCTDH Method; Meyer, Manthe & Cederbaum 1990).The varia-II:thm:mctdh
tional approximation on the MCTDH manifold (3.40) is given by (3.30), where the coef-
ficients and single-particle functions are solutions to thesystem of coupled ordinary and
partial differential equations

i~
daJ
dt

=
∑

K

〈ΦJ |H |ΦK〉 aK , ∀ J = (j1, . . . , jN ) , (3.41) work1

i~
∂ϕ

(n)
jn

∂t
= (I − P (n))

rn∑

kn=1

rn∑

ln=1

(ρ(n))−1
jn,kn

〈ψ(n)
kn

|H |ψ(n)
ln

〉(¬n) ϕ
(n)
ln
, (3.42) work2

jn = 1, . . . , rn, n = 1, . . . , N .

This holds on every time interval on which a strong solution to these equations exists.
Here, the Hartree productsΦJ , the single-hole functionsψ(n)

jn
, and the density matrices

ρ(n) are defined in (3.30), (3.33), and (3.38), respectively. Thesuperscript (¬n) indicates
that the inner product is over all variables exceptxn, andP (n) is the orthogonal projector
onto the linear span ofϕ(n)

1 , . . . , ϕ
(n)
rn . ⊓⊔

We note that the projectorP (n) is given asP (n)ϑ =
∑rn

jn=1 ϕ
(n)
jn

〈ϕ(n)
jn

|ϑ〉(n), with
the inner product over the variablexn.

For a smooth bounded potential with bounded derivatives, itis shown by Koch &
Lubich (2007) that a strong solutionϕ(n)

jn
∈ C1([0, t), L2(R3)) ∩ C([0, t), H2(R3)) to

the MCTDH equations exists either globally for all times or up to a timet where a density
matrixρ(n) becomes singular.



II.3 Separating the Particles: Self-Consistent Field Methods 45

At a singularity of a density matrixρ(n), the equations of motion break down. To avoid
such problems in computations, the density matrices are usually regularized toρ(n) + µI
with a small parameterµ. Although such regularized solutions exist for all times, anear-
singularity can still cause numerical problems, in particular in the step size selection of a
time integration method.

The MCTDH method has been used successfully for accurately computing the quan-
tum dynamics of small molecules in a variety of chemical situations such as photodisso-
ciation and reactive scattering, for problems involving 6 to 24 nuclear degrees of freedom
and one or several electronic states; see, e.g., Raab, Worth, Meyer & Cederbaum (1999).

The complexity of the method grows exponentially with the number of particles: there
arerN coefficientsaJ if rn = r orbitals are taken for each particle. Several variants and
extensions of the MCTDH method have been designed for the computational treatment
of larger systems, such as the coupling with Gaussian wavepackets for secondary modes
(Burghardt, Meyer & Cederbaum 1999) and thehierarchical, cascadicor multilayerver-
sions of MCTDH (Beck, Jäckle, Worth & Meyer 2000, Wang & Thoss 2003) with which
particular systems of up to 500 degrees of freedom have been treated.

Hierarchical MCTDH Method. Considering for simplicity a system withN = 2L par-
ticles, the binary cascadic MCTDH method determines an approximation to the wave
function in the form

u =

r∑

j,k=1

ajk ϕ
(0)
j ⊗ ϕ

(1)
k

where, for a binary numberB = (b1, . . . , bℓ) with bm ∈ {0, 1} and ℓ < L, we set
recursively

ϕBi =

r∑

j,k=1

aBi,jk ϕ
(B,0)
j ⊗ ϕ

(B,1)
k ,

and forℓ = L we have the single-particle functions. The variational approximationu is
thus built up from a binary tree, with the single-particle functions sitting at the end of the
branches. This approach uses onlyr3N instead ofrN coefficients.

The orthogonality relations (3.31) and (3.34) can now be imposed on each level: at
the final level for the single-particle functions and at the other levels by

〈ϕBℓ |ϕBi 〉 =

r∑

j,k=1

aBℓ,jk a
B
i,jk = δiℓ

〈ϕBℓ | ϕ̇Bi 〉 =

r∑

j,k=1

aBℓ,jk ȧ
B
i,jk = 0 .

The derivation of the equations of motion is then analogous to that of the MCTDH method
given above, with recurrences climbing up and down the tree for the computation of the
required inner products.
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Multi-Configuration Time-Dependent Hartree-Fock Method (MCTDHF). For elec-
tron dynamics, a multi-configuration extension of the TDHF method is obtained by using
the time-dependent variational principle for approximations of the form

u =
∑

1≤j1<...<jN≤K
cj1...jN ϕj1 ∧ . . . ∧ ϕjN (3.43) II:mctdhf

with K > N . The sum is over all

(
K
N

)
subsets withN elements of{1, . . . ,K}. The

equations of motion of the MCTDHF method for a Hamiltonian (3.21) are those of the
MCTDH method withϕ(n)

j = ϕj independent ofn and with an antisymmetric tensor:
for every multi-indexJ = (j1, . . . , jN ) and permutationσ ∈ SN and withσ(J) =
(jσ(1), . . . , jσ(N)),

aσ(J) = sign(σ) aJ .

We refer to Zanghellini, Kitzler, Fabian, Brabec & Scrinzi (2003) and Koch, Kreuzer &
Scrinzi (2006) for uses and properties of the MCTDHF approach.

No Theoretical Approximation Estimates.While the neighbouring sections close with
theoretical results on the approximation error, apparently no such results are available for
the methods considered in this section. One might hope that the multi-configuration meth-
ods converge to the exact wave function as the number of configurations is increased to in-
finity, but to date no such result exists. One obstacle to sucha convergence result is the fact
that the density matricesρ(n) become more and more ill-conditioned as more nearly ir-
relevant configurations are included. Another difficulty lies in the time-dependent orbitals
whose approximation properties are not under control. In Sect. II.6 we show, however, that
for afixednumber of configurations, the variational approximation isquasi-optimal in the
sense that its error – on sufficiently short time intervals – is bounded in terms of the error
of the best approximation to the wave function by the given number of configurations.

Notwithstanding the deficiencies in theory, the methods considered in this section
have proven their value in computations on realistic chemical and physical systems — the
tool apparently works.

II.4 Parametrized Wave Functions: Gaussian Wave
Packets

II:sect:gwp
A further modelling or approximation step consists in replacing the wave function by
a function that depends only on a finite number of real or complex parameters. The
time-dependent variational principle then yields evolution equations for these parameters
that retain a Hamiltonian character, albeit with a non-canonical Poisson bracket. Gaus-
sian wave packets parametrized by position, momentum, complex width and phase are a
prominent example. In the classical limit, their variational equations of motion for posi-
tion and momentum yield the Newtonian equations of classical molecular dynamics.
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II.4.1 Variational Gaussian Wave-Packet Dynamics

We consider a Schrödinger equation in semi-classical scaling, forx ∈ Rd,

iε
∂ψ

∂t
= Hψ , H = Hε = −ε

2

2
∆+ V , (4.1) II:schrod-eps

with a small positive parameterε ≪ 1 (formally in place of~, see Sect. II.2.3) and a
potentialV . The typical situation of (4.1) is the time-dependent Born-Oppenheimer ap-
proximation for the motion of nuclei, whereε2 represents a mass ratio of nuclei and
electrons.

As proposed by Heller (1976), the variational approximation of (4.1) can be done by
complex Gaussians of the type

ψ(x, t) ≈ u(x, t) = exp

(
i

ε

(
1

2
(x− q(t))TC(t)(x− q(t)) + p(t) · (x− q(t)) + ζ(t)

))
,

(4.2) II:gwp

whereq(t) ∈ R
d is the position average andp(t) ∈ R

d is the momentum average of the
wave packet. The matrixC(t) ∈ Cd×d is a complex symmetric width matrix with positive
definite imaginary part, possibly further restricted to a diagonal matrix or just a multiple
of the identity,c(t)Id with complexc(t). Finally, ζ(t) ∈ C is a phase and normalization
parameter.

The choice of Gaussians appears attractive because the exact wave function retains the
form of a multidimensional Gaussian for all times in the caseof a quadratic potential, even
for a time-dependent quadratic potential. This useful factfollows from the observation
thatHu then is in the tangent space atu, and therefore the variational approximation and
the exact wave function coincide. For a narrow wave packet, of width ∼ ε1/2 in (4.2), a
smooth potential appears locally approximately quadratic, and we may then expect good
approximation by Gaussians, as will be made more precise in Sect. II.4.4 in an argument
based on the error bound (1.11).

The equations of motion for the parameters read as follows (Heller 1976, Coalson &
Karplus 1990): with〈A〉 = 〈u |A |u〉 denoting the average of an observableA in the
Gaussian stateu of unitL2 norm, we have classically-looking equations for position and
momentum, with the average of the gradient∇V of the potential,

q̇ = p

ṗ = −〈∇V 〉 .
(4.3) II:gwp-qp

For the width matrixC and the complex phaseζ we have, with the Hessian∇2V and with
tr denoting the trace of a matrix,

Ċ = −C2 − 〈∇2V 〉 (4.4) II:gwp-C

ζ̇ =
1

2
|p|2 − 〈V 〉 +

iε

2
trC +

ε

4

〈
tr
(
(ImC)−1∇2V

)〉
. (4.5) II:gwp-phase
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WhenC is restricted to diagonal matrices, then the diagonal part is to be taken on the
right-hand side of the differential equation forC. WhenC = cI is restricted to a multiple
of the identity (spherical Gaussians), then the differential equation forc is obtained by
taking the trace on both sides of the differential equation for C. If the width matrix is
taken constant (frozen Gaussians, Heller 1981), then the equation forC is discarded, and
only the equations for position and momentum and phase remain.

The more general situation of a Hamiltonian

H = −
N∑

n=1

ε2

2mn
∆xn + V

with different mass parametersmn, collected in the diagonal mass matrixM = diag(mn),
is readily reduced to (4.1). This is done by transforming to variableŝx = M1/2x and to

q̂ = M1/2q , p̂ = M−1/2p , Ĉ = M−1/2CM−1/2 , ζ̂ = ζ ,

which again evolve according to the differential equations(4.3)–(4.5).
As ε → 0, the Gaussians (4.2) become narrower and increasingly concentrated atq,

and we have〈∇V 〉 → ∇V (q) for a Gaussian of unitL2 norm. Hence the equations for
positionq and momentump become the

classical equations of motion in the limitε→ 0.

The differential equations (4.3)–(4.5) are a regular perturbation to the equations forε = 0:
letting ε → 0 gives a well-defined limit on the right-hand side. They are nolonger a
singularly perturbed system as (4.1) is. In contrast to the Gaussian wave packet, the time-
dependent parameters are not highly oscillatory functions.

We shall give a derivation of the equations of motion (4.3)–(4.5) that highlights their
mathematical structure as a non-canonical Hamiltonian system (or a Poisson system in
another terminology). We first study the structure of the variational equations of motion
in coordinates on an approximation manifold in a general setting and then return to the
particular case of Gaussian wave packets. The presentationin this section essentially fol-
lows Faou & Lubich (2006).

II.4.2 Non-Canonical Hamilton Equations in Coordinates
II:sect:non-can

Canonical Poisson Structure of the Schr̈odinger Equation. We splitψ ∈ L2(Rd,C)
into the real and imaginary partsψ = v+ iw. The functionsv andw are thus functions in
the real Hilbert spaceL2(Rd,R). We denote the complex inner product by〈· | ·〉 and the
real inner product by(· | ·).

As the HamiltonianH is a real operator, the Schrödinger equation (4.1) can be written

εv̇ = Hw,
εẇ = −Hv . (4.6) II:gwp-ELSS
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With the canonical structure matrix

J =

(
0 −1
1 0

)

and the Hamiltonian function

H(v, w) = 〈ψ |H |ψ〉 = (v |Hv) + (w |Hw)

forψ = v+iw (we use the same symbolH as for the operator), this becomes the canonical
Hamiltonian system (

v̇
ẇ

)
=

1

2ε
J−1∇H(v, w) . (4.7) II:gwp-can-ham

We note that the real multiplication withJ corresponds to the complex multiplication
with the imaginary uniti.

As in Theorem 1.2, the flow of this system preserves the canonical symplectic two-
form

ω(ξ, η) = 2ε (ξ | Jη) = (ξ2 | η1) − (ξ1 | η2), ξ, η ∈ L2(Rd,R)2. (4.8) II:gwp-symp-2

The associated Poisson bracket is

{F,G}can =
1

2ε
(∇F | J−1∇G) (4.9) II:gwp-poi-can

for functionsF,G : H1(Rd,R)2 → R. We have

d

dt
F (v(t), w(t)) = {F,H}can(v(t), w(t))

along the solutions of (4.7).

Poisson Structure of Variational Approximations. We consider a finite-dimensional
smooth submanifoldM (of dimensionm) of the complex Hilbert spaceL2(Rd,C) with
the property (1.3), i.e., withµ ∈ TuM alsoiµ ∈ TuM at everyu ∈ M.

Taking the imaginary part in the Dirac–Frenkel time-dependent variational principle
(1.2) onM yields, upon identifyingu = v + iw with the real pairu = (v, w)T ,

(
µ | 2εJu̇−∇uH(u)

)
= 0 for all µ ∈ TuM . (4.10) II:gwp-qvar

We choose (local) coordinates onM so that we have a smooth parametrization

u = χ(y)

of M, for y in an open subset ofRm. We denote the derivativeXC(y) = dχ(y) =

V (y)+iW (y) or in the real setting asX =

(
V
W

)
, which is of full rank for a coordinate

mapχ. We denote byXT the adjoint ofX with respect to the real inner product(· | ·).
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Sinceu̇ = X(y)ẏ and the tangent vectors inTuM are given asµ = X(y)η with arbitrary
η ∈ Rm, we obtain from (4.10) the differential equation inRm,

2εX(y)TJX(y) ẏ = X(y)T∇uH(χ(y)) . (4.11) II:gwp-y-eq

With X∗
C

denoting the adjoint ofXC with respect to the complex inner product〈· | ·〉, we
noteX∗

C
XC = (V TV +WTW ) + i(V TW −WTV ) = XTX − iXTJX and hence

XTJX = −ImX∗
CXC. (4.12) XTJX

This skew-symmetric matrix is invertible, as the followinglemma shows.

lem:symp-mf Lemma 4.1. If TuM is a complex linear space for everyu ∈ M, then

X(y)TJX(y) is invertible for ally.

Proof. We fix u = χ(y) ∈ M and omit the argumenty in the following. SinceTuM =
Range(XC) is complex linear by assumption, there exists a real linear mappingL : Rm →
Rm such thatiXCη = XCLη for all η ∈ Rm. This implies

JX = XL and L2 = −Id

and henceXTJX = XTXL, which is invertible, sinceX is of full rank. ⊓⊔

We denote the inverse, which is again skew-symmetric, by

B(y) =
1

2ε

(
X(y)TJX(y)

)−1
. (4.13) B-def

Introducing the Hamiltonian function on the manifoldM in the coordinatesy as

K(y) = H(χ(y)), (4.14) K-def

we noteX(y)T∇uH(χ(y)) = ∇yK(y) in (4.11). We then have the following result.

Theorem 4.2 (Variational Equations of Motion in Coordinates).The differential equa-II:thm:poisson
tions of the variational approximation in coordinates read

ẏ = B(y)∇yK(y) . (4.15) poi

This is a non-degenerate Poisson system, i.e., the structure matrixB(y) is invertible and
generates a bracket

{F,G}(y) = ∇F (y)TB(y)∇G(y) (4.16) bracket

on smooth real-valued functionsF,G, which is antisymmetric({G,F} = −{F,G}) and
satisfies the Jacobi identity({E, {F,G}} + {F, {G,E}} + {G, {E,F}} = 0) and the
Leibniz rule({E · F,G} = E · {F,G} + F · {E,G}).
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Proof. By (4.11) and the definitions ofB(y) andK(y), we have (4.15). It remains
to prove the properties of the bracket. Sinceε plays no role here, we letB(y) =(
X(y)TJX(y)

)−1
(without the factor 1

2ε ) in this proof. For pointsu ∈ M we intro-
duce the symplectic projectorΠ(u) from the Hilbert spaceH = L2(Rd,R)2 onto the
tangent spaceTuM as

Π(u) = X(y)B(y)X(y)TJ, u = χ(y) ∈ M ,

From the induced decompositionH = Π(u)H⊕
(
I−Π(u)

)
H we obtain, by the implicit

function theorem, a corresponding splitting in a neighbourhood of the manifoldM in H,

ψ = u+ v with u ∈ M, Π(u)v = 0 .

This permits us to extend functionsF to a neighbourhood ofM by setting

F̂ (ψ) = F (y) for ψ = u+ v with u = χ(y), Π(u)v = 0 .

We then have for the derivativedF̂ (u) = dF̂ (u)Π(u) and hence for its adjoint, the
gradient,∇F̂ (u) = Π(u)T∇F̂ (u). Moreover,∇F (y) = X(y)T∇F̂ (u) for u = χ(y).
For the canonical bracket this gives, atu = χ(y),

{F̂ , Ĝ}can(u) = ∇F̂ (u)TΠ(u)J−1Π(u)T∇Ĝ(u)

= ∇F (y)TB(y)∇G(y) = {F,G}(y) .

Therefore the stated properties follow from the corresponding properties of the canonical
bracket. ⊓⊔

We note that along solutionsy(t) of (4.15) we have, for real-valued functionsF ,

d

dt
F (y(t)) = {F,K}(y(t)).

More on Poisson systems can be found in Hairer, Lubich & Wanner (2006), Chap. VII.2,
and Marsden & Ratiu (1999), Chap. 8.5. In particular, the flowmapφt : y(0) 7→ y(t) is a
Poisson map, that is, it preserves the Poisson bracket as

{F ◦ φt, G ◦ φt} = {F,G} ◦ φt ∀F,G .

The property of being a Poisson map in the coordinates can be translated to be an equiv-
alent formulation of the symplecticity of the flow on the manifold M as stated by Theo-
rem 1.2.

II.4.3 Poisson Structure of Gaussian Wave-Packet Dynamics

The variational Gaussian wave-packet dynamics (4.3)–(4.5) is obtained by choosing the
manifoldM as consisting of complex Gaussians (4.2). For ease of presentation we give
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the derivation for spherical Gaussians, whereC = cId with a complexc = α + iβ with
β > 0, andId is thed-dimensional identity. We write the complex phase asζ = γ + iδ.
We then have the approximation manifold

M = {u = χ(y) ∈ L2(Rd) : y = (p, q, α, β, γ, δ) ∈ R
2d+4 with β > 0} (4.17) M-gwp

with
(
χ(y)

)
(x) = exp

( i
ε

(
(α+ iβ) |x− q|2 + p · (x− q) + γ + iδ

))
. (4.18) chi-gwp

The tangent spaceTuM ⊂ L2(Rd) at a given pointu = χ(y) ∈ M is (2d + 4)-
dimensional and is made of the elements ofL2(Rd) written as

i

ε

(
(A+ iB) |x− q|2 + (P − 2(α+ iβ)Q) · (x − q) − p ·Q+ C + iD

)
u (4.19) E4

with arbitrary(P,Q,A,B,C,D)T ∈ R2d+4. The tangent spaceTuM is indeed complex
linear (noteβ > 0). Moreover, we haveu ∈ TuM, and hence Theorem 1.4 shows the
preservation of the squaredL2 norm ofu = χ(y), which is given by

N(y) = ‖χ(y)‖2 = exp

(
−2δ

ε

)(
πε

2β

)d/2
. (4.20) Eny

We then have the following result.

Theorem 4.3 (Gaussian Wave-Packet Dynamics as a Poisson System). The varia-P2
tional approximation on the Gaussian wave-packet manifoldM of (4.17)–(4.18) yields
the Poisson system

ẏ = B(y)∇yK(y) (4.21) Epoi

where, fory = (p, q, α, β, γ, δ) ∈ R2d+4 with β > 0,

B(y) =
1

N(y)




0 −Id 0 0 −p 0

Id 0 0 0 0 0

0 0 0 4β2

εd 0 −β
0 0 − 4β2

εd 0 β 0

pT 0 0 −β 0 d+2
4 ε

0 0 β 0 − d+2
4 ε 0




(4.22) EBy

defines a Poisson structure, and foru = χ(y),

K(y) = 〈u |H |u〉 = KT (y) +KV (y) (4.23) EKy

is the total energy, with kinetic and potential parts
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KT (y) = N(y)

( |p|2
2

+
εd

2

α2 + β2

β

)
=
〈
u
∣∣∣ − ε2

2
∆
∣∣∣ u
〉

and

KV (y) =

∫

Rd

V (x) exp
(
− 2

ε

(
β|x − q|2 + δ

))
dx = 〈u |V |u〉.

BothK(y) andN(y) are conserved quantities of the system.

Proof. By (4.18), the derivativeXC(y) = dχ(y) =
(
∂u
∂p ,

∂u
∂q ,

∂u
∂α ,

∂u
∂β ,

∂u
∂γ ,

∂u
∂δ

)
for u =

χ(y) is written

XC(y) =
i

ε

(
x− q , −2(α+ iβ)(x− q) − p , |x− q|2 , i|x− q|2 , 1 , i

)
u .

Calculating the Gaussian integrals, we obtain from (4.12) that

2εXT (y)JX(y) = N(y)




0 Id 0 0 0 0

−Id 0 0 dp
2β 0 2p

ε

0 0 0 − εd(d+2)
8β2 0 − d

2β

0 − dpT

2β
εd(d+2)

8β2 0 d
2β 0

0 0 0 − d
2β 0 − 2

ε

0 − 2pT

ε
d
2β 0 2

ε 0




.

The inverse of this matrix can be computed explicitly to givethe above matrixB(y). The-
orem 4.2 then yields the Poisson system, and Theorems 1.1 and1.4 give the conservation
of energy and norm. ⊓⊔

II.4.4 Approximation Error
II:subsec:gwp-error

From the error bound (1.11) we derive the following result, which is closely related to a
result by Hagedorn (1980) on non-variational Gaussian wavepackets.

Theorem 4.4 (Error Bound for Variational Gaussian Wave Packets). Consider theII:thm:gwp-error
variational multidimensional Gaussian wave packet approximation (4.3)–(4.5). Assume
that the smallest eigenvalue of the width matrixImC(t) is bounded from below by a
constantρ > 0. Assume that the potentialV is three-times continuously differentiable
with a bounded third derivative. Then, the error between theGaussian wave packetu(t)
and the exact wave functionψ(t) with Gaussian initial dataψ(0) = u(0) is bounded in
theL2 norm by

‖u(t) − ψ(t)‖ ≤ c t ε1/2 ,

wherec depends only onρ and the bound of∂3V .



54 II. Reduced Models via Variational Approximation

Proof. In view of the error bound of Theorem 1.5, we estimate the distance of 1
iεHu(t)

to the tangent spaceTu(t)M. We split the potential into the quadratic Taylor polynomial
Uq(t) at the current positionq(t) and the non-quadratic remainderWq(t),

V = Uq(t) +Wq(t) ,

where we note|Wq(x)| ≤ 1
3! B3 |x − q|3 with a boundB3 of ∂3V . Since both∆u and

Uqu are in the tangent spaceTuM given by (4.19), we have

dist
(

1

iε
Hu, TuM

)
= dist

(
1

iε
Wqu, TuM

)
≤
∥∥∥1

ε
Wqu

∥∥∥ .

With the above bound forWq and the condition on the width matrix we obtain, for a
Gaussian stateu of unitL2 norm,

‖Wqu‖ ≤ c1

(
ε−d/2

∫

Rd

e−2ρ|x−q|2/ε |x− q|6 dx
)1/2

≤ c ε3/2 ,

and hence the result follows with Theorem 1.5. ⊓⊔
As is clear from the proof, the global boundedness of∂3V can be weakened to a bound

in a neighbourhood of the positionsq(t) and exponential growth outside this region.
We remark that an analogous result does not hold for Gaussianwave packets where

the width matrix is restricted to a diagonal matrix.
Though the above result is asymptotically comforting, it must be noted that for re-

alistic values ofε ≈ 10−2, a result with a predicted error ofε1/2 cannot necessarily be
considered accurate. We will turn to more accurate semi-classical methods briefly in the
next section and in more detail in Chapter V.

II.5 Mixed Models, Quantum-Classical Models

There are numerous possibilities for extensions and combinations of the models described
in the foregoing sections. For example, within an MCTDH framework, for some parts of
the system the single-particle functions might be chosen asGaussians, while they are left
of a general form for other particles (Burghardt, Meyer & Cederbaum, 1999). Consid-
ering the Gaussians of frozen width in such a model and passing to the classical limit
ε → 0 in the equations of motions for positions and momenta then yields equations of
motion where most particles are described classically while some are treated quantum-
mechanically. For example, this is desired for studying proton transfer in a critical region
of a molecule, or more generally for describing a quantum subsystem in a classical bath.

II.5.1 Mean-Field Quantum-Classical Model

Among the various possible mixed quantum-classical models, we now describe the con-
ceptually simplest one which has found widespread use in computations, in spite of
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its known flaws. Consider a system of light and heavy particles (e.g., protons and the
other, heavier nuclei in a molecule), where one would like todescribe the light particles
quantum-mechanically and the heavy particles classically. Letx andy denote the position
coordinates of heavy and light particles, respectively. Weconsider the Schrödinger equa-
tion with the HamiltonianH = − ε2

2 ∆x − 1
2∆y + V (x, y), whereε2 is the mass ratio as

in Section II.2.3. We start from a time-dependent Hartree approximation to the full wave
functionΨ(x, y, t)

Ψ(x, y, t) ≈ γ(x, t)ψ(y, t) ,

where we restrictγ(x, t) further to take the form of a frozen Gaussian at variable position
q(t) and with variable momentump(t). When we write down the equations of motion
for the corresponding variational approximation and let the width of the Gaussians tend
to zero, so that averages overx are replaced by evaluations at the positionq(t), then
we obtain the following coupled system of classical and quantum equations where the
classical particles are driven by the mean-field potential of the quantum particles, the wave
function of which is determined by a Schrödinger equation with a potential evaluated at
the current classical position:

q̇ = p

ṗ = −∇q〈ψ |V (q, ·) |ψ〉 (5.1) II:qcmd

iε
∂ψ

∂t
= −1

2
∆ψ + V (q, ·)ψ .

While this appears as an attractive model at first sight, its mean-field character is flawed.
The problem becomes clear by the following argument: Suppose we start with an initial
wave function

Ψ(x, y, 0) = α1γ
0
1(x)Φ1(x, y) + α2γ

0
2(x)Φ2(x, y) ,

whereΦj(x, ·) are eigenfunctions ofHe(x) = − 1
2∆ + V (x, ·) to well-separated eigen-

valuesEj(x), of unitL2
y norm, andγ0

j are complex Gaussians of width∼ ε1/2 and unit
L2
x norm. The coefficients should satisfy|α1|2 + |α2|2 = 1 so thatΨ is of unit L2

x,y

norm. Using first Theorem 2.1 and then Theorem 4.4 shows that for timest ∼ 1 the exact
wave functionΨj(x, y, t) with initial dataγ0

j (x)Φj(x, y) is approximately, up to an error
of orderε1/2,

Ψj(x, y, t) ≈ γj(x, t)Φj(x, y) ,

whereγj(x, t) is a Gaussian located at a positionqj(t) that follows classical equations of
motion

q̇j = pj , ṗj = −∇qEj(qj) . (5.2) II:two-q

The total wave functionΨ = α1Ψ1 + α2Ψ2 is thus approximately equal to

Ψ(x, y, t) ≈ α1γ1(x, t)Φ1(x, y) + α2γ2(x, t)Φ2(x, y) .
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On the other hand, in (5.1) the time-adiabatic theorem mentioned after Theorem 2.1 and
applied with the time-dependent HamiltonianH∗(t) = − 1

2∆+ V (q(t), ·), yields that for
timest ∼ 1,

ψ(y, t) ≈ β1(t)Φ1(q(t), y) + β2(t)Φ2(q(t), y)

with coefficients satisfying|βj(t)| = |αj |, so that

〈ψ |He(q) |ψ〉 ≈ |α1|2E1(q) + |α2|2E2(q)

and hence the classical motion in (5.1) is approximately determined by

q̇ = p , ṗ = −∇q

(
|α1|2E1(q) + |α2|2E2(q)

)
, (5.3) II:one-q

with a potential that is a convex linear combination of the potentials in (5.2). Unless
the potentialsEj happen to be quadratic, not even the average positionα1q1 + α2q2 is
described correctly by the equations forq. The equations (5.1) are asymptotically correct,
however, if we start from a pure eigenstate (whereα1 = 1, α2 = 0).

This example illustrates that even very plausible-lookingmodels must be considered
with care and assessed critically by analysis and (numerical and physical) experiments.

For an asymptotic analysis of the above mixed quantum-classical model we refer to
Bornemann & Schütte (1999). The quantum-mechanical part can be further restricted,
assuming for exampleψ(y, t) in the form of a Slater determinant, thus combining classical
motion and the time-dependent Hartree-Fock method. Globalexistence of solutions for
such a model has been studied by Cancès & Le Bris (1999).

II.5.2 Quantum Dressed Classical Mechanics
sec:qdcm

Even if the approximation by a Gaussian wave packet is too rough, it can nevertheless
be reused in a correction scheme, which is once more based on the time-dependent varia-
tional principle. We briefly describe such an approach due toBilling (2003). Letq(t), p(t)
be defined by Gaussian wave packet dynamics with a diagonal width matrix with entries
cn(t), possibly further simplified by using the classical equations of motion forq andp
and a similar simplification in the differential equations for the widths, replacing averages
by point evaluations. We search for an approximation to the wave function of the form

ψ(x1, . . . , xN , t) ≈
∑

J

aJ (t)φ
(1)
j1

(x1, t) · . . . · φ(N)
jN

(xN , t) ,

where the sum is over a set of multi-indicesJ = (j1, . . . , jN ) and the functionsφ(n)
j

are shifted and scaled Gauss-Hermite basis functions defined by (we assume allxn one-
dimensional for simplicity)

φ
(n)
j (xn, t) = exp

(
i

ε

(
cn(t) (xn − qn(t))

2 + pn(t) (xn − qn(t))
))

·

Hj

(√
2 Im cn(t)

ε
(xn − qn(t))

)
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with Hermite polynomialsHj and the known Gaussian parametersqn(t), pn(t), and
cn(t). The unknown coefficientsaJ(t) are determined by differential equations obtained
from the variational principle on thetime-dependentapproximation manifold (here actu-
ally a linear space)

Mt =
{
u : u(x1, . . . , xN ) =

∑

J

aJ φ
(1)
j1

(x1, t) · . . . · φ(N)
jN

(xN , t), aJ ∈ C
}
,

at every instantt as previously in (1.2), except that nowdu/dt is not sought for in the
tangent space ofMt, but as the derivative of a pathu(t) ∈ Mt.

This approach leads to a method which adapts the location andwidth of the Her-
mite basis functions to Gaussian wave packets that follow classical trajectories. We will
consider in more detail a somewhat related, but computationally favourable approach in
Chap. V.

II.5.3 Swarms of Gaussians

In a conceptually similar approach, frozen Gaussiansγk(x, t) first evolve independently
according to the classical equations of motion for positionand momentum and with the
phase given by the action integral

∫ t
0

(
1
2 |pk|2 − 〈V 〉γk

)
ds, as proposed by Heller (1981).

This approximation is then improved upon by taking a linear combination

ψ(x, t) ≈
∑

k

ak(t) γk(x, t) ,

where the coefficientsak(t) are determined by the time-dependent variational principle:

〈∑

j

bjγj

∣∣∣
∑

k

(ȧkγk + akγ̇k) −
1

iε
H
∑

k

akγk

〉
= 0 ∀ b = (bj) .

This yields a linear system of differential equations fora = (ak),

Mȧ =
1

iε
Ka− La

with the matricesM =
(
〈γj | γk〉

)
, L =

(
〈γj | γ̇k〉

)
, K =

(
〈γj |H | γk〉

)
. While the

L2 norm of the approximation is conserved, the total energy andsymplecticity arenot
conserved by applying the variational principle on a time-dependent approximation space
as is done here, in contrast to the case of a time-independentapproximation manifold as
studied in Sect. II.1.3.

The above approach was mentioned by Heller (1981) and has been carried further
by Ben-Nun & Martinez (1998, 2000) together with criteria when to create, or “spawn”
new basis functions. It is related in spirit to particle methods in fluid dynamics; see, e.g.,
Monaghan (1992) and Yserentant (1997).
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II.6 Quasi-Optimality of Variational Approximations
II:sect:quasi-opt

In this theoretical section we consider variational approximation on a manifoldM and
study the following question: In case the true wave functionremains close to the manifold,
does the time-dependent variational principle then provide a good approximation? Stated
differently: Can the error of the variational approximation be bounded in terms of the
error of the best approximation to the wave function onM?

This is a familiar question in other areas of numerical analysis; cf. Céa’s lemma on
the optimality of Galerkin approximations of elliptic boundary value problems as stated,
e.g., in Ciarlet (1991), p. 113. A positive answer to this question separates the problems
of approximability of the wave function on the chosen manifold, which often is a model-
ing hypothesis, and the quality of the time-dependent variational principle for obtaining
approximate wave functions.

Following Lubich (2005), we give a conditionally positive answer under assumptions
that include, for example, the time-dependent Hartree method and its multi-configuration
versions.

Assumptions.We consider the Schrödinger equation (1.1) on a Hilbert spaceH, with
~ = 1 in the following, and the variational approximation given by the Dirac-Frenkel
principle (1.2) on the manifoldM. The HamiltonianH is split as

H = A+B (6.1) HAB

with self-adjoint linear operatorsA andB whereA is such thatu ∈ M impliese−itAu ∈
M for all t. This is satisfied if and only ifA is tangential, that is,

Au ∈ TuM for all u ∈ M∩D(A). (6.2) A

We assume that the (non-tangential) operatorB is bounded:

‖Bϕ‖ ≤ β ‖ϕ‖ (6.3) B

for all ϕ ∈ H. About the approximation manifoldM we assume the condition (1.3) of
complex linear tangent spacesTuM, and a condition that is satisfied ifM contains rays
(cf. Theorem 1.4):

u ∈ TuM for all u ∈ M , (6.4) uTM

A bound of the curvature ofM is formulated in terms of the orthogonal projectorsP (u) :
H → TuM andP⊥(u) = I − P (u):

‖ (P (u) − P (v))ϕ ‖ ≤ κ ‖u− v‖ · ‖ϕ‖ (6.5) kappa1

‖P⊥(v)(u − v) ‖ ≤ κ ‖u− v‖2 (6.6) kappa2

for all u, v ∈ M andϕ ∈ H. We assume thatP (u(t))ϕ is a continuously differentiable
function oft in H for every continuously differentiable pathu(t) onM andϕ ∈ H. These
assumptions will actually be needed only in a neighbourhoodof the wave function or the
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variational approximation, so that only a local bound of thecurvature rather than a global
bound enters the estimates.

The initial dataψ(0) is assumed to be onM and of unit norm. We consider a time
interval on which the solutionψ(t) to (1.1) remains nearM, in the sense that

dist(ψ(t),M) ≤ 1

2κ
for 0 ≤ t ≤ t . (6.7) psinear

Both the exact wave functionψ(t) and the variational approximationu(t) of (1.2) are
required to be in the domain ofH for 0 ≤ t ≤ t, with a bound

‖Hψ(t)‖ ≤ µ , ‖Hu(t)‖ ≤ µ and ‖Au(t)‖ ≤ µ . (6.8) mu

Further we consider the distance boundδ ≤ µ given by

dist (Hψ(t), Tv(t)M) ≤ δ , dist (Hu(t), Tu(t)M) ≤ δ , (6.9) delta

wherev(t) ∈ M is the nearest point toψ(t) onM:

‖v(t) − ψ(t)‖ = dist (ψ(t),M) .

Discussion of the Assumptions.In all the examples of this chapter,A might be chosen
as the kinetic energy operatorT , though this might not always be the optimal choice.
A more critical assumption is the boundedness of the operator B that maps outside the
tangent space. It is a reasonable assumption in the Schrödinger equation of the nuclei
and its Hartree and Gaussian wave packet approximations (and their multi-configuration
versions). The condition is not satisfied, however, in the time-dependent Hartree-Fock
method for the electronic Schrödinger equation where the Coulomb potentials are un-
bounded. We refer to Lubich (2005) for a corresponding result in the Coulomb case.

We have assumed the splitting (6.1) independent of time for ease of presentation,
though the result would extend directly to the situation of atime-dependent splittingH =
A(t) +B(t). For example, in the (multi-configuration) Hartree method we might choose
A(t) = T + V1 + . . . + VN with the mean-field potentialsVn, so thatB(t) becomes
the difference between the given potential and the sum of themean-field potentials. This
can be expected to give more favourable error bounds than a time-independent splitting
into kinetic energy and potential. For Gaussian wave packets we can split intoA(t) =
T + Uq(t) with the local quadratic approximationUq(t) to the potential at the position
q(t), and the non-quadratic remainderB(t), as we did in the proof of Theorem 4.4.

Condition (6.4) is satisfied for all the examples in this chapter. Conditions (6.5) and
(6.6) encode curvature information ofM in a form that is suitable for our analysis. Con-
dition (6.7) ensures thatψ(t) has a unique nearest point onM. The regularity assumption
(6.8) forψ(t) is satisfied if the initial value has such regularity. The regularity (6.8) of
the approximate solutionu(t) needs to be ascertained, but is known to hold, e.g., for the
(multi-configuration) time-dependent Hartree method whenthe Schrödinger equation for
the nuclei has a smooth bounded potential.

The following result bounds the error of the variational approximation in terms of the
best-approximation error.
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Theorem 6.1 (Quasi-Optimality of Variational Approximati ons). Under conditionsII:thm:near-opt
(6.1)–(6.9), the error of the variational approximation isbounded by

‖u(t) − ψ(t)‖ ≤ d(t) + Ceγt
∫ t

0

d(s) ds with d(t) = dist(ψ(t),M) (6.10) err-opt

and withγ = 2κδ andC = β + 3κµ , for 0 ≤ t ≤ t .

Though the bound (6.10) can be pessimistic in a concrete situation, it does identify sources
that can make the variational approximation deviate far from optimality even if the best-
approximation errord(t) is small: large curvature of the approximation manifold (κ), a
large effective non-separable potential in the Hamiltonian (β, δ), lack of regularity in the
exact or approximate solution (µ, δ), and long time intervals (t).

Proof. The proof compares the differential equation foru(t) with the equation satisfied
by the best approximationv(t) ∈ M with ‖v(t) − ψ(t)‖ = d(t).

(a) The functionv(t) is implicitly characterized by the condition (omitting theobvious
argumentt in the following)

P (v) (v − ψ) = 0 . (6.11) v-eq

Under condition (6.7), the implicit function theorem can beused to show that this equation
has a unique solution in the ball of radius1/(2κ) aroundψ, which depends continuously
differentiable ont. We derive a differential equation forv(t) by differentiating (6.11) with
respect tot ( ˙= d/dt):

0 = P (v)(v̇ − ψ̇) +
(
P ′(v) · (v − ψ)

)
v̇ (6.12) Pdot

with (P ′(v) · ϕ)v̇ = (d/dt)P (v(t))ϕ for ϕ ∈ H. Sincev̇ ∈ TvM, we haveP (v)v̇ = v̇,
and the equation becomes

(
I + P ′(v) · (v − ψ)

)
v̇ = P (v)ψ̇ . (6.13) v-ode1

By (6.5) and (6.7) we have

‖P ′(v) · (v − ψ)‖ ≤ κ ‖v − ψ‖ ≤ 1

2
,

so that the operator in (6.13) is invertible and

v̇ = P (v)ψ̇ + r(v, ψ) with ‖r(v, ψ)‖ ≤ 2κµ ‖v − ψ‖ . (6.14) v-ode2

Here we have used the bound (6.8),‖ψ̇‖ = ‖Hψ‖ ≤ µ. Inserting (1.1) in (6.14), the
equation can be written as

v̇ = P (v)
1

i
Hv − P (v)

1

i
H(v − ψ) + r(v, ψ) . (6.15) v

We will compare this differential equation with Equation (1.5) foru(t), viz.,
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u̇ = P (u)
1

i
Hu . (6.16) u

In (6.15) and in the following we tacitly assumev(t) ∈ D(H) = D(A). (If v does not
have this regularity, then the proof would proceed by replacing v by a regularized family
(vε) with vε(t) ∈ M ∩ D(H) andvε → v in C1([0, t],H) asε → 0. Applying the
arguments below tovε and lettingε→ 0 in the final estimate then gives the result.)

(b) We form the difference of (6.16) and (6.15), take the inner product withu− v and
consider the real part. We then have

‖u− v‖ · d
dt

‖u− v‖ =
1

2

d

dt
‖u− v‖2 = Re〈u− v | u̇− v̇〉 = I + II + III

with

I = −Re〈u− v |P (u)iHu− P (v)iHv〉
II = −Re〈u− v |P (v)iH(v − ψ)〉
III = −Re〈u− v | r(v, ψ)〉 .

(c) Using the self-adjointness ofH = A + B and condition (6.2), which implies
P⊥(v)iAv = 0, we write

I = Re〈u− v |P⊥(u)iHu− P⊥(v)iHv〉
= Re〈u− v |P⊥(u)iHu〉 − Re〈u− v |P⊥(v)iBv〉 .

To treat the expressionII, we split

II = −Re〈u − v |P (v)iA(v − ψ)〉 − Re〈u− v |P (v)iB(v − ψ)〉 .

It is in the first term that condition (6.4) is used. This condition impliesP (v)v = v and
hence, by (6.11),

v = P (v)ψ, v − ψ = P⊥(v)(v − ψ) = −P⊥(v)ψ .

It follows that

〈v |P (v)iA(v − ψ)〉 = −〈v |P (v)iAP⊥(v)ψ〉 = 〈P⊥(v)iAv |ψ〉 .

SinceP⊥(v)iAv = 0 by (6.2), we obtain

〈v |P (v)iA(v − ψ)〉 = 0 . (6.17) II:aux-v

Similarly, (6.2) implies
〈u | iAP⊥(u)(v − ψ)〉 = 0 . (6.18) II:aux-u

Now, (6.17) yields

〈u− v |P (v)iA(v − ψ)〉 = 〈u | iA(v − ψ)〉 − 〈u − v |P⊥(v)iA(v − ψ)〉 .
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With (6.18) and once againP⊥(v)iAv = 0, we obtain

〈u− v |P (v)iA(v − ψ)〉
= −〈u | iA(P⊥(u) − P⊥(v))(v − ψ)〉 + 〈u − v |P⊥(v)iAψ〉 .

Using thatA andP⊥(v) = P⊥(v)2 are self-adjoint and thatA = H −B by (6.1), this is
rewritten as

〈u− v |P (v)iA(v − ψ)〉
= −〈iAu | (P (u)− P (v))(v − ψ)〉 + 〈P⊥(v)(u − v) |P⊥(v)iHψ〉

−〈u− v |P⊥(v)iBψ〉 .

We then arrive at the basic equation of the proof,

I + II = Re〈P⊥(u)(u− v) |P⊥(u)iHu〉
− Re〈u− v | iB(v − ψ)〉
+ Re〈iAu | (P (u) − P (v))(v − ψ)〉
− Re〈P⊥(v)(u − v) |P⊥(v)iHψ〉 .

With (6.3)–(6.9) we thus obtain

|I + II| ≤ κ ‖u− v‖2 · δ + ‖u− v‖ · β ‖v − ψ‖
+ µ · κ ‖u− v‖ · ‖v − ψ‖ + κ ‖u− v‖2 · δ

= 2κδ ‖u− v‖2 + (β + κµ) ‖u− v‖ · ‖v − ψ‖ .

(d) Together with (6.14) for boundingIII, this estimate gives

d

dt
‖u− v‖ ≤ γ‖u− v‖ + C‖v − ψ‖

with γ = 2κδ andC = β + 3κµ. The Gronwall inequality then implies

‖u(t) − v(t)‖ ≤ Ceγt
∫ t

0

‖v(s) − ψ(s)‖ ds , (6.19) uv

and the triangle inequality foru − ψ = (u − v) + (v − ψ) together withd = ‖v − ψ‖
yield the result. ⊓⊔



Chapter III.
Numerical Methods for the Time-Dependent
Schrödinger Equation

chap:num-tdse
This chapter deals with numerical methods for linear time-dependent Schrödinger equa-
tions, of low to moderate dimension (less than 10, say). Although the emphasis is on
time-dependent aspects, we begin with a section on space discretization, where we de-
scribe the Galerkin and collocation approaches on the important examples of Hermite and
Fourier bases, including their extension to higher dimensions using hyperbolic cross ap-
proximations and sparse grids for which the computational work grows only mildly with
the dimension.

We then turn to time-stepping methods: polynomial approximations to the exponential
of the Hamiltonian based on the Lanczos method or on Chebyshev polynomials, and
splitting methods and their high-order refinements by composition and processing. We
conclude the chapter with a brief look at integrators for Schrödinger equations with a
time-varying potential.

The time-dependent Schrödinger equation considered in this chapter is ind ≥ 1 space
dimensions, has~ = 1 and reads

i
∂ψ

∂t
= Hψ , H = T + V , (0.1) III:schrod-eq

with the kinetic energy operatorT = − 1
2µ∆ for a positive mass parameterµ and with a

potentialV (x).

III.1 Space Discretization by Spectral Methods

III:sect:spectral
We follow two tracks (among many possible) for the discretization of the Schrödinger
equation in space: the Galerkin method with a basis of Hermite functions and collocation
with trigonometric polynomials. Both cases are instances of spectral or pseudospectral
methods, which are of common use in many application areas; see, e.g., Canuto, Hus-
saini, Quarteroni & Zang (2006), Fornberg (1996), Gottlieb& Orszag (1977), and Tre-
fethen (2000). Both cases are studied here for the Schrödinger equation in one and several
dimensions, with the extension to higher dimensions by hyperbolically reduced tensor
product bases.



64 III. Numerical Methods for the Time-Dependent Schrödinger Equation

III.1.1 Galerkin Method, 1D Hermite Basis
III:subsec:hermite

Galerkin Method. We consider an approximation spaceVK ⊂ L2(Rd) spanned byK
basis functionsϕ0, . . . , ϕK−1. We determine an approximate wave functionψK(t) ∈ VK
by the condition that at every instantt, its time derivative is determined by the condition

dψK
dt

∈ VK such that
〈
ϕ
∣∣∣ i dψK

dt
−HψK

〉
= 0 ∀ϕ ∈ VK . (1.1) III:galerkin

This is, of course, the time-dependent variational principle (II.1.2) on the linear approxi-
mation spaceVK . In particular, we know from Sect. II.1 that norm, energy andsymplectic
structure are preserved. Writing the approximation as a linear combination of basis func-
tions

ψK(t) =

K−1∑

k=0

ck(t)ϕk (1.2) III:gal-sum

and inserting in (1.1), we obtain for the time-dependent coefficient vectorc = (ck) the
linear system of ordinary differential equations

iMK ċ = HKc (1.3) III:gal-coeff

with the matrices

MK =
(
〈ϕj |ϕk〉

)K−1

j,k=0
, HK =

(
〈ϕj |H |ϕk〉

)K−1

j,k=0
. (1.4) III:gal-matrix

The matrixMK becomes the identity matrix in the case of an orthonormal basis, where
〈ϕj |ϕk〉 = δjk.

Hermite Basis in 1D.After a suitable rescaling and shiftx → αx + β, this is the choice
of basis functions

ϕk(x) =
1

π1/4

1√
2kk!

Hk(x) e
−x2/2 . (1.5) III:hermite-formula

Here,Hk(x) is the Hermite polynomial of degreek, which is thekth orthogonal poly-
nomial with respect to the weight functione−x

2

on R; see, e.g., Abramowitz & Stegun
(1965). While formula (1.5) does not fail to impress, it is neither useful for computations
nor for understanding the approximation properties of thisbasis. We therefore now turn
to another way of writing the Hermite functionsϕk, which also provides some motivation
for the use of this basis.

Ladder Operators. We recall the canonical commutator relation (I.4.8) between the one-
dimensional position operatorq given by(qψ)(x) = xψ(x) and the momentum operator
p = −i d/dx :

1

i
[q, p] = 1.

It follows that Dirac’sladder operatorsdefined by

A =
1√
2

(q + ip) , A† =
1√
2

(q − ip) (1.6) III:ladder
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satisfy the relations

A†A =
1

2
(p2 + q2) − 1

2
, AA† =

1

2
(p2 + q2) +

1

2
, (1.7) III:AdA

so thatA†A andAA† have the same eigenfunctions as the Hamiltonian of the harmonic
oscillator,12 (p2 + q2). We also note

AA† = A†A+ 1 . (1.8) III:AdA-commute

Moreover,A† is adjoint toA on the Schwartz spaceS of smooth rapidly decaying func-
tions:

〈A†ϕ |ψ〉 = 〈ϕ |Aψ〉 ∀ϕ, ψ ∈ S . (1.9) III:A-adj

Harmonic Oscillator Eigenfunctions via the Dirac Ladder. We note that the Gaussian
φ0(x) = e−x

2/2 is in the kernel ofA: Aφ0 = 0. Moreover, it is checked that multiples of
φ0 are the onlyL2 functions in the kernel ofA, whereasA† has only the trivial kernel0.
With (1.8) it follows that

AA†φ0 = A†Aφ0 + φ0 = φ0 ,

and henceφ0 is an eigenfunction ofAA† to the eigenvalue1. Applying the operatorA†

to both sides of this equation, we see thatφ1 = A†φ0 is an eigenfunction ofA†A to
the eigenvalue1, and again by (1.8) an eigenfunction ofAA† to the eigenvalue2. We
continue in this way to construct successivelyφk+1 = A†φk for k ≥ 0. We thus obtain
eigenfunctionsφk toA†A, with eigenvaluek, and toAA†, with eigenvaluek + 1. These
eigenfunctions are not yet normalized. To achieve this, we note that by (1.9),

‖A†φk‖2 = 〈A†φk |A†φk〉 = 〈φk |AA†φk〉 = (k + 1) ‖φk‖2 .

We therefore obtain eigenfunctions toAA† andA†A of unitL2 norm by setting

ϕ0(x) =
1

π1/4
e−x

2/2 (1.10) III:phi0

and

ϕk+1 =
1√
k + 1

A†ϕk for k ≥ 0 . (1.11) III:raising

SinceAϕk+1 = 1√
k+1

AA†ϕk =
√
k + 1ϕk, we also have (replacingk + 1 by k)

ϕk−1 =
1√
k
Aϕk for k ≥ 0 . (1.12) III:lowering

These relations explain the names ofraising operatorandlowering operatorfor A† and
A, respectively, and ofladder operatorsfor both of them. Multiplying (1.11) by

√
k + 1

and (1.12) by
√
k, summing the resulting formulas and using the definitions ofA andA†,

we obtain the three-term recurrence relation
√
k + 1ϕk+1(x) =

√
2 xϕk(x) −

√
k ϕk−1(x) for k ≥ 0 , (1.13) III:hermite-rec

with ϕ−1(x) = 0. This allows us to evaluateϕk(x) at any required pointx. We state
essential properties of these functions.
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Fig. 1.1.Hermite functionsϕk for k = 0, 4, 16, 64.

Theorem 1.1 (Hermite Functions).The functionsϕk defined by (1.10) and (1.11) formIII:thm:hermite
a completeL2-orthonormal set of functions, the eigenfunctions of the harmonic oscillator
Hamiltonian 1

2 (p2 + q2). They are identical to the Hermite functions given by (1.5).

Proof. From the above construction it is clear that eachϕk is an oscillator eigenfunction
to the eigenvaluek + 1

2 . As normalized eigenfunctions of a self-adjoint operator,theϕk
are orthonormal. It is also clear from the recurrence relation thatϕk is a polynomial of
degreek timese−x

2/2. By the orthonormality, this polynomial must be a multiple of the
kth Hermite polynomial, which yields (1.5). For the proof of completeness we refer to
Thaller (2000), Sect. 7.8. ⊓⊔

The completeness together with orthonormality yields thatevery functionf ∈ L2(R)
can be expanded as the series

f =
∞∑

k=0

〈ϕk | f〉ϕk , (1.14) III:hermite-series

where the convergence of the series is understood as convergence of the partial sums in
theL2 norm.
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Approximation Properties. We denote byPK the orthogonal projector ontoVK =
span(ϕ0, . . . , ϕK−1), given by

PKf =
∑

k<K

〈ϕk | f〉ϕk .

This is the best approximation tof in VK with respect to theL2 norm. We have the
following approximation result, for which we recallA = 1√

2
(x + d/dx).

Theorem 1.2 (Approximation by Hermite Functions). For every integers ≤ K andIII:thm:hermite-approx
every functionf in the Schwartz spaceS,

‖f − PKf‖ ≤ 1√
K(K − 1) . . . (K − s+ 1)

‖Asf‖ .

Given sufficient smoothness and decay of the function, the approximation error thus de-
cays asO(K−s/2) for growingK and any fixeds.

Proof. Using subsequently (1.14), (1.11) and (1.9) we obtain

f − PKf =
∑

k≥K
〈ϕk | f〉ϕk

=
∑

k≥K

1√
k(k − 1) . . . (k − s+ 1)

〈(A†)sϕk−s | f〉ϕk

=
∑

k≥K

1√
k(k − 1) . . . (k − s+ 1)

〈ϕk−s |Asf〉ϕk .

By orthonormality, this yields

‖f − PKf‖2 ≤ 1

K(K − 1) . . . (K − s+ 1)

∑

j≥0

∣∣〈ϕj |Asf〉
∣∣2

=
1

K(K − 1) . . . (K − s+ 1)
‖Asf‖2 ,

which is the desired result. ⊓⊔

Since the set of linear combinations of shifted Gaussians isknown to be dense in
L2(R) (e.g., Thaller, 2000, p. 40), it is instructive to see the action ofAs on e−(x−a)2/2.
A short calculation yieldsAe−(x−a)2/2 = 1√

2
a e−(x−a)2/2 and hence

As e−(x−a)2/2 = 2−s/2 as e−(x−a)2/2 .

No surprise, the approximation ofe−(x−a)2/2 by Hermite functionsϕk centered at0 is
slow to converge for large shifts|a| ≫ 1. According to Theorem 1.2, the error becomes
small fromK > e

2a
2 onwards (on choosings = K and using Stirling’s formula forK!).



68 III. Numerical Methods for the Time-Dependent Schrödinger Equation

Error of the Galerkin Method with Hermite Basis in 1D. We are now in the position to
prove the following error bound. For a related result we refer to Faou & Gradinaru (2007).

Theorem 1.3 (Galerkin Error). Consider the Galerkin method with the one-dimen-III:thm:hermite-galerkin
sional Hermite basis(ϕ0, . . . , ϕK−1), applied to a 1D Schr̈odinger equation (0.1) with a
potentialV (x) = (1 + x2)B(x) with boundedB, with initial valueψK(0) = PKψ(0).
Then, if the exact solution is inD(As+2) for some integers ≤ K/2, the error is bounded
by

‖ψK(t) − ψ(t)‖ ≤ C K−s/2 (1 + t) max
0≤τ≤t

‖As+2ψ(τ)‖ ,

whereC is independent ofK and t, is bounded byC ≤ c 2s/2 in dependence ofs, and
depends linearly on the bound ofB.

Proof. (a) We write the Galerkin equation (1.1) as

iψ̇K = PKHPKψK

with the Hermitian matrixPKHPK , and the Schrödinger equation (0.1), acted on byPK ,
as

iPK ψ̇ = PKHPK PKψ + PKHP
⊥
Kψ ,

whereP⊥
K = I − PK is the complementary orthogonal projection. Subtracting the two

equations and taking the inner product withψK − PKψ yields, by the same argument as
in the proof of Theorem II.1.5,

‖ψK(t) − PKψ(t)‖ ≤ ‖ψK(0) − PKψ(0)‖ +

∫ t

0

‖PKHP⊥
Kψ(τ)‖ dτ .

We show in part (b) of the proof that

‖PKHP⊥
Kψ‖ ≤ C K−s/2 ‖As+2ψ‖ . (1.15) III:skew-est

The result then follows together with Theorem 1.2, applied with s + 2 instead ofs, to
estimateψ(t) − PKψ(t).

(b) It remains to prove (1.15). We recall thatH = 1
2µp

2 + B(1 + q2). By (1.6) we
have

p2 = −1

2
(A−A†)2 , q2 =

1

2
(A+A†)2 .

With (1.11) and (1.12) this gives

p2ϕk = −1

2

(√
k(k − 1)ϕk−2 − (2k + 1)ϕk +

√
(k + 2)(k + 1)ϕk+2

)

q2ϕk =
1

2

(√
k(k − 1)ϕk−2 + (2k + 1)ϕk +

√
(k + 2)(k + 1)ϕk+2

)
.

This yields, withck = 〈ϕk |ψ〉,

PKp
2P⊥

Kψ = cK
√
K(K − 1)ϕK−2 + cK+1

√
(K + 1)K ϕK−1 .
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Estimating the coefficientsck as in the proof of Theorem 1.2 withs+ 2 instead ofs, we
obtain

‖PKp2P⊥
Kψ‖ ≤ C K−s/2 ‖As+2ψ‖ .

Similarly, we get
‖q2P⊥

Kψ‖ ≤ C K−s/2 ‖As+2ψ‖ .
Together with the boundedness ofB, these two estimates imply the bound (1.15). ⊓⊔

We remark that from Theorem II.1.5, we can alternatively obtain an a posteriori error
boundC K−s/2 t max0≤τ≤t

(
‖As+2ψK(τ)‖+‖As+2BψK(τ)‖

)
, where the approximate

solutionψK instead of the exact solutionψ appears in the estimate.

Computation of the Matrix Elements. To compute the entries of the matrixHK of (1.4),
we split into the harmonic oscillator and the remaining potential,

H = D +W ≡ 1

2µ
(p2 + q2) +

(
V − 1

2µ
q2
)
.

and consider the corresponding matrices

DK =
(
〈ϕj |D |ϕk〉

)K−1

j,k=0
, WK =

(
〈ϕj |W |ϕk〉

)K−1

j,k=0
.

By Theorem 1.1,DK is diagonal with entriesdk = (k + 1
2 )/µ. To computeWK , we

useGauss–Hermite quadrature, that is, Gaussian quadrature for the weight functione−x
2

overR (see, e.g., Gautschi 1997): forM ≥ K, let xi (i = 1, . . . ,M ) be the zeros of the
M th Hermite polynomialHM (x). With the corresponding weightswi or ωi = wi e

x2
i ,

the quadrature formula
∫ ∞

−∞
e−x

2

h(x) dx ≈
M∑

i=1

wi h(xi) or
∫ ∞

−∞
f(x) dx ≈

M∑

i=1

ωi f(xi)

is exact for all polynomialsh of degree up to2M − 1. If f(x) = g(x) · e−x2/2 with a
functiong ∈ L2(R) for which the coefficientsck = 〈ϕk | g〉 in the Hermite expansion
(1.14) ofg satisfy|ck| ≤ C (1+k)−r with r > 1, we then obtain that the quadrature error
is bounded byO(M−r).

We thus approximate

〈ϕj |W |ϕk〉 ≈
M∑

i=1

ωi ϕj(xi)W (xi)ϕk(xi) , (1.16) III:quad

usingM evaluations of the potential for allK2 matrix elements, and evaluatingϕj(xi)
via the recurrence relation (1.13). To obtain all matrix elements with good accuracy, one
would have to chooseM distinctly larger thanK, but in practice a popular choice is
M = K. Though the lower right block in the matrix is then inaccurate, this does not
impair the asymptotic accuracy of the overall numerical method for largeK, since the
inaccurate matrix elements only meet with the small coefficients that correspond to high-
order Hermite functions. This observation can be turned into rigorous estimates with the
arguments of the above proofs.
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III.1.2 Higher Dimensions: Hyperbolic Cross and Sparse Grids
III:subsec:hermite-d

We now turn to the Galerkin method with a tensor-product Hermite basis for thed-
dimensional Schrödinger equation (0.1).

Full Tensor-Product Basis.The theory of the preceding section immediately extends to
a full tensor-product basis of Hermite functions: for all multi-indicesk = (k1, . . . , kd)
with integers0 ≤ kn < K, take the product functions

ϕ(k1,...,kd)(x1, . . . , xd) = ϕk1(x1) . . . ϕkd
(xd)

or briefly
ϕk = ϕk1 ⊗ · · · ⊗ ϕkd

(1.17) III:phi-tensor

as the basis functions in the Galerkin method. While this is theoretically satisfactory, it
is computationally infeasible in higher dimensions: the number of basis functions, the
number of coefficients, the computational work all grow likeKd, exponentially with the
dimensiond to the large baseK.

k1

k2

k1

k2

Fig. 1.2.Full and hyperbolically reduced tensor basis (K = 32). III:fig:hyp

Hyperbolic Reduced Tensor-Product Basis.Instead of takingall tensor products with
kj < K, we only take a subset of multi-indices: for a boundK, let the hyperbolic multi-
index setK be given as

K = K(d,K) =
{
(k1, . . . , kd) : kn ≥ 0,

d∏

n=1

(1 + kn) ≤ K
}
. (1.18) III:hyp-set

This is illustrated ford = 2 andK = 32 in Fig. 1.2. Taking only the tensor productsϕk
of (1.17) withk ∈ K as the basis functions in the Galerkin method greatly reduces their
number:
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III:lem:K Lemma 1.4. The numberN(d,K) of multi-indices inK(d,K) is bounded by

N(d,K) ≤ K (logK)d−1 . (1.19) III:card-K

Proof. We clearly haveN(1,K) = K. We then note

N(2,K) ≤ K

1
+
K

2
+
K

3
· · · + K

K
≤ K logK ,

where the terms in the sum correspond tok2 = 0, 1, . . . ,K − 1, respectively. In general,
we have

N(d,K) ≤ N(d− 1,K) +N(d− 1,K/2) + · · · +N(d− 1,K/K) ,

which by induction leads to the stated bound. ⊓⊔
Computations with the Galerkin method on the reduced tensor-product approximation

space
VK = span{ϕk : k ∈ K} (1.20) III:hyp-space

thus appear to become feasible up to fairly large dimensiond.

Approximation Properties. Can we still get decent approximations on this reduced
space? As we show next, this is possible under more stringentregularity assumptions
on the functions to be approximated. We denote byPK the orthogonal projector ontoVK,
given by

PKf =
∑

k∈K
〈ϕk | f〉ϕk .

We let An = 1√
2
(xn + d/dxn) and for a multi-indexσ = (σ1, . . . , σd), we denote

Aσ = Aσ1

1 . . . Aσd

d . We then have the following approximation result.

Theorem 1.5 (Approximation by the Reduced Tensor Hermite Basis).For every fixedIII:thm:hermite-approx-d
integers and every functionf in the Schwartz spaceS(Rd),

‖f − PKf‖ ≤ C(s, d)K−s/2 max
|σ|∞≤s

‖Aσf‖ ,

where the maximum is taken over allσ = (σ1, . . . , σd) with 0 ≤ σn ≤ s for eachn.

Proof. For every multi-indexk = (k1, . . . , kd) we define the multi-indexσ(k) by the
conditionkn−σ(k)n = (kn−s)+ (with a+ = max{a, 0}) for all n = 1, . . . , d, and note
that0 ≤ σ(k)n ≤ s. Similar to the proof of Theorem 1.2 we have

f − PKf =
∑

k/∈K
〈ϕk | f〉ϕk

=
∑

k/∈K
ak,s 〈(A†)σ(k)ϕk−σ(k) | f〉ϕk

=
∑

k/∈K
ak,s 〈ϕk−s |Aσ(k)f〉ϕk ,
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where the coefficientsak,s come about by (1.11) and are given as

ak,s =

d∏

n=1

1√
(1 + (kn − 1)+) . . . (1 + (kn − s)+)

.

They satisfy, fork /∈ K,

|ak,s|2 ≤ c(s, d)

Ks
, (1.21) III:a-coeff

because by the definition (1.18) ofK we have the bound, fork /∈ K and withr = 1, . . . , s,

d∏

n=1

(
1 + (kn − r)+

)
≥ K

d∏

n=1

1 + (kn − r)+
1 + kn

≥ K (r + 1)−d .

By orthonormality, (1.21) yields

‖f − PKf‖2 ≤ c(s, d)

Ks

∑

k

∣∣〈ϕk |Aσ(k)f〉
∣∣2 .

Since there aresd different possible values ofσ(k), a crude estimation yields

‖f − PKf‖2 ≤ sd c(s, d)

Ks
max

|σ|∞≤s
‖Aσf‖2 ,

which is the stated result. ⊓⊔

We note that for a shiftedd-dimensional Gaussiane−|x−a|2/2, we have the relation
Aσe−|x−a|2/2 = (a/

√
2)σe−|x−a|2/2, and so we now needK ≫ ∏d

n=1(1 + |an|2) to
obtain a good approximation.

Error of the Galerkin Method with Reduced Tensor Hermite Basis. With the proof of
Theorem 1.3 we then obtain the following result from Theorem1.5.

Theorem 1.6 (Galerkin Error). Consider the Galerkin method with the hyperbolicallyIII:thm:hermite-galerkin-d
reduced tensor Hermite basis applied to ad-dimensional Schr̈odinger equation (0.1) with
a potentialV (x) = (1+ |x|2)B(x) with boundedB, with initial valueψK(0) = PKψ(0).
Then, for any fixed integers the error is bounded by

‖ψK(t) − ψ(t)‖ ≤ C(s, d)K−s/2 (1 + t) max
0≤τ≤t

max
|σ|∞≤s+2

‖Aσψ(τ)‖

with the maximum over allσ = (σ1, . . . , σd) with 0 ≤ σn ≤ s+ 2 for eachn. ⊓⊔

Numerical Integration Using Sparse Grids. The matrix elements〈ϕj |H |ϕk〉 for
j, k ∈ K contain high-dimensional integrals. These can be approximated by numerical in-
tegration on sparse grids, following Smolyak (1963), Zenger (1991), Gerstner & Griebel
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(1998) and using an adaptation that takes care of the increasingly oscillatory behaviour of
the high-order Hermite functions.

We describe Smolyak’s sparse grid quadrature when based on one-dimensional Gauss–
Hermite quadrature in every coordinate direction. Forℓ = 0, 1, 2, . . . , let xℓi denote the
zeros of the Hermite polynomial of degree2ℓ, and letwℓi be the corresponding weights and
ωℓi = wℓi e

(xℓ
i)

2

, so that we have the one-dimensional2ℓ-point Gauss–Hermite quadrature
formula

Qℓf =

2ℓ∑

i=1

ωℓi f(xℓi) ≈
∫ ∞

−∞
f(x) dx .

We introduce the difference formulas between successive levels,

∆ℓf = Qℓf −Qℓ−1f ,

and for the lowest level we set∆0f = Q0f . The full tensor quadrature approximation at
levelL to ad-dimensional integral

∫
Rd f(x1, . . . , xd) dx1 . . . dxd reads

QL ⊗ . . .⊗QLf =
2L∑

i1=1

. . .
2L∑

id=1

ωLi1 . . . ω
L
id
f(xLi1 , . . . , x

L
id

) ,

which can be rewritten as

QL ⊗ . . .⊗QLf =

L∑

ℓ1=0

. . .

L∑

ℓd=0

∆ℓ1 ⊗ . . .⊗∆ℓdf (1.22) III:Q-full

and uses(2L)d grid points at whichf is evaluated. This number is substantially reduced
in Smolyak’s algorithm, which neglects all contributions from the difference terms with
ℓ1 + . . .+ ℓd > L and thus arrives at the quadrature formula

∑

ℓ1+...+ℓd≤L
∆ℓ1 ⊗ . . .⊗∆ℓdf ≈

∫

Rd

f(x1, . . . , xd) dx1 . . . dxd . (1.23) III:smolyak

Here,f is evaluated only at the points of thesparse grid

Γ dL = {(xℓ1i1 , . . . , x
ℓd
id

) : ℓ1 + . . .+ ℓd ≤ L} ,

which has onlyO(2L · Ld−1) points; as an illustration see Fig. III.1.2 forL = 5 and
d = 2. If f(x) = g(x) · e−|x|2/2 with a functiong ∈ L2(Rd) for which the coefficients
cm = 〈ϕm | g〉 in the Hermite expansion ofg satisfy

|cm| ≤ C
d∏

n=1

(1 +mn)
−r (1.24) III:cm

with r > 1, then the contribution of the omitted terms withℓ1 + . . .+ ℓd > L and hence
the quadrature error can be shown, by a tedious exercise, to be bounded byO((2L)−r).
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III:fig:sparse-hermite
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Fig. 1.3.Gauss–Hermite sparse grid (L = 5, d = 2).

Remark.A disadvantage of Gauss–Hermite quadrature formulas is thefact that they are
not nested: the quadrature points of levelℓ− 1 are not a subset of those of levelℓ. As an
alternative, which will not be explored here, one might consider transformation to a finite
interval and using the trapezoidal rule or Clenshaw-Curtisquadrature there. With a nested
quadrature, the sparse grid contains approximately half asmany grid points as for the case
of a non-nested basic quadrature formula with the same number of quadrature points. It
is not clear if the otherwise excellent properties of Gauss–Hermite quadrature are indeed
offset by nested quadratures for suitably truncated or transformed integrals.

Computation of the Matrix Elements. The integrandfjk in the matrix element

〈ϕj |W |ϕk〉 =

∫

Rd

ϕj(x)W (x)ϕk(x) dx ≡
∫

Rd

fjk(x) dx

becomes highly oscillatory for multi-indicesj andk with large components. In this situ-
ation, an estimate of the type (1.24) cannot be expected to hold true with a constant that
is uniform inj andk, but rather (witha+ = max{a, 0})

|cm(j, k)| ≤ C

d∏

n=1

(
1 + (mn − jn − kn)+

)−r
(1.25) III:cjkm

for the Hermite coefficientscm(j, k) of gjk(x) = fjk(x) e
|x|2/2. This suggests a mod-

ification of Smolyak’s algorithm in which terms in the sum (1.22) are discarded only
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if they are of sizeO((2L)−r) under condition (1.25). Such an adaptation of the algo-
rithm reads as follows: for a pair of multi-indicesj andk, let ℓ̂1, . . . , ℓ̂d be such that
c · 2bℓn−1 < max{jn, kn} ≤ c · 2bℓn for a chosen constantc. We discard only terms with

(ℓ1 − ℓ̂1)+ + . . .+ (ℓd − ℓ̂d)+ > L .

In the case of a hyperbolically reduced multi-index set (1.18), we have actually

ℓ̂1 + . . .+ ℓ̂d ≤ 2 log2K + αd ,

whereα ∈ R depends only onc. Such a modification can thus be implemented by in-
creasingL in dependence ofK by 2 log2K. The number of evaluations of the potential
on the resulting sparse grid thus becomesO(K2 · 2L · (L + 2 log2K)d−1) and hence
is essentially quadratic inK of (1.18). The choice ofL depends on the smoothness and
growth properties of the potential.

III.1.3 Collocation Method, 1D Fourier Basis
III:subsec:fourier-1d

Truncation, Periodization, Rescaling.We start from the one-dimensional Schrödinger
equation (0.1) on the real line. If we expect the wavefunction to be negligible outside an
interval [a, b] on the considered time interval, we may replace the equationon the whole
real line by that on the finite interval with periodic boundary conditions. After a rescaling
and shiftx→ αx+ β we may assume that the space interval is[−π, π]:

i
∂ψ

∂t
(x, t) = − 1

2µ

∂2ψ

∂x2
(x, t) + V (x)ψ(x, t) , x ∈ [−π, π] , (1.26) III:schrod-1d

with periodic boundary conditions:ψ(−π, t) = ψ(π, t) for all t.

Collocation by Trigonometric Polynomials.We look for an approximation to the wave
functionψ(x, t) by a trigonometric polynomial at every instantt,

ψ(x, t) ≈ ψK(x, t) =

K/2−1∑

k=−K/2
ck(t) e

ikx , x ∈ [−π, π] , (1.27) III:trig-pol

whereK is a given even integer. We might determine the unknown Fourier coefficients
ck(t) by a Galerkin method on the space of trigonometric polynomials as in the previous
section. Here, we consider instead the approach bycollocation, which requires that the
approximations satisfy the Schrödinger equation in a finite number of grid points, as many
points as there are unknown coefficients. We thus choose theK equidistant grid points
xj = j · 2π/K with j = −K/2, . . . ,K/2 − 1 and require that

i
∂ψK
∂t

(xj , t) = − 1

2µ

∂2ψK
∂x2

(xj , t) + V (xj)ψ(xj , t) (j = −K/2, . . . ,K/2 − 1).

(1.28) III:coll
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This condition is equivalent to a system of ordinary differential equations for the coeffi-
cientsck(t), as we show next.

Discrete Fourier Transform. LetFK : CK → CK denote thediscrete Fourier transform
of lengthK, defined by

v̂ = FKv with v̂k =
1

K

K/2−1∑

j=−K/2
e−ikj·2π/K vj (k = −K/2, . . . ,K/2 − 1).

(1.29) III:dft

The inverse transform is thenF−1
K = KF∗

K , that is,

v = F−1
K v̂ with vj =

K/2−1∑

k=−K/2
eijk·2π/K v̂k (j = −K/2, . . . ,K/2 − 1). (1.30) III:dftinv

The familiarfast Fourier transform(FFT) algorithm (see, e.g., the informative Wikipedia
article on this topic) computes either transform withO(K logK) complex multiplications
and additions, instead of theK2 operations needed for a naive direct computation from
the definition.

Differential Equations for the Fourier Coefficients and Grid Values.From (1.27) we
note that the vector of grid values ofψK is the inverse discrete Fourier transform of the
coefficient vector:

(
ψK(xj , t)

)K/2−1

j=−K/2 = F−1
K

(
ck(t)

)K/2−1

k=−K/2 . (1.31) III:c-psi

This relation and differentiation of (1.27) yield that the collocation condition (1.28) is
equivalent to the following differential equation for the vectorc = (ck) of Fourier coeffi-
cients: with the diagonal matricesDK = 1

2µ diag(k2) andVK = diag
(
V (xj)

)
,

iċ = DKc+ FKVKF−1
K c . (1.32) III:coll-c

Alternatively, by taking the inverse Fourier transform on both sides of (1.32) and recalling
(1.31), we obtain a system of differential equations for thegrid valuesuj(t) = ψK(xj , t):
for the vectoru = (uj),

iu̇ = F−1
K DKFKu+ VKu . (1.33) III:coll-u

We observe that the matrices on the right-hand sides of (1.32) and (1.33) are all Hermitian,
because

√
KFK is a unitary transformation.

Approximation by Trigonometric Interpolation. For a continuous2π-periodic function
f we denote byIKf the trigonometric polynomial withK Fourier modes ranging from
−K/2 toK/2 − 1 which interpolatesf in theK equidistant grid pointsxj = j · 2π/K:

IKf(x) =

K/2−1∑

k=−K/2
ck e

ikx with (ck)
K/2−1
k=−K/2 = FK

(
f(xj)

)K/2−1

j=−K/2 .
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Theorem 1.7 (Interpolation Error). Suppose thatf is a2π-periodic function for whichIII:thm:ipol
thes-th derivative∂sxf ∈ L2, for somes ≥ 1. Then, the interpolation error is bounded in
L2 by

‖f − IKf‖ ≤ C K−s ‖∂sxf‖ ,
whereC depends only ons.

Proof. We write the Fourier series off and the trigonometric interpolation polynomial as

f(x) =

∞∑

k=−∞
ak e

ikx , IKf(x) =

K/2−1∑

k=−K/2
ck e

ikx .

From the interpolation condition it is verified that the coefficients are related by thealias-
ing formula

ck =

∞∑

ℓ=−∞
ak+ℓK .

Using Parseval’s formula and the Cauchy–Schwarz inequality, we thus obtain

‖f − IKf‖2 =

K/2−1∑

k=−K/2

(∣∣∣
∑

ℓ 6=0

ak+ℓK

∣∣∣
2

+
∑

ℓ 6=0

|ak+ℓK |2
)

≤
K/2−1∑

k=−K/2

(∑

ℓ 6=0

(k + ℓK)−2s ·
∑

ℓ 6=0

(k + ℓK)2s|ak+ℓK |2

+
∑

ℓ 6=0

(k + ℓK)−2s · (k + ℓK)2s|ak+ℓK |2
)

≤ C2K−2s
∞∑

k=−∞
|ksak|2 = C2K−2s ‖∂sxf‖2 ,

which is the desired result. ⊓⊔
In the same way it is shown that for every integerm ≥ 1,

‖∂mx (f − IKf)‖ ≤ C K−s ‖∂s+mx f‖ . (1.34) III:ipol-diff

Error of the Collocation Method with Fourier Basis in 1D. We obtain the following
error bound.

Theorem 1.8 (Collocation Error). Suppose that the exact solutionψ(t) = ψ(·, t) hasIII:thm:coll-error
∂s+2
x ψ(t) ∈ L2 for everyt ≥ 0, for somes ≥ 1. Then, the error of the Fourier collocation

method (1.28) with initial valueψK(x, 0) = IKψ(x, 0) is bounded inL2 by

‖ψK(t) − ψ(t)‖ ≤ C K−s (1 + t) max
0≤τ≤t

‖∂s+2
x ψ(τ)‖ ,

whereC depends only ons.
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Proof. The error analysis is based on reformulating method (1.28) as an equation with
continuous argument: by interpolation on both sides of (1.28),

i
∂ψK
∂t

(x, t) = − 1

2µ

∂2ψK
∂x2

(x, t) + IK(V ψK)(x, t) , x ∈ [−π, π] . (1.35) III:coll-cont

On the other hand, using thatIKV ψ = IKV IKψ, we obtain that the interpolant to the
solution satisfies the equation

i
∂IKψ
∂t

(x, t) = − 1

2µ

∂2IKψ
∂x2

(x, t) + (IKV IKψ)(x, t) + δK(x, t) , (1.36) III:coll-ipol

with the defect

δK = − 1

2µ

(
IK

∂2ψ

∂x2
− ∂2IKψ

∂x2

)
.

The errorεK = ψk − IKψ thus satisfies the equation

i
∂εK
∂t

= − 1

2µ

∂2εK
∂x2

+ IK(V εK) − δK .

In terms of the Fourier coefficientse = (ek) andd = (dk) given by

εK(x, t) =

K/2−1∑

k=−K/2
ek(t) e

ikx , δK(x, t) =

K/2−1∑

k=−K/2
dk(t) e

ikx ,

this reads, as in (1.32):
iė = DKe+ FKVKF−1

K e− d ,

with Hermitian matrices on the right-hand side, sinceFK is unitary. Forming the Eu-
clidean inner product withe, taking the real part and integrating we obtain, by the same
argument as in the proof of Theorem II.1.5,

‖e(t)‖ ≤ ‖e(0)‖ +

∫ t

0

‖d(τ)‖ dτ .

By Parseval’s formula, this is the same as

‖εK(t)‖ ≤ ‖εK(0)‖ +

∫ t

0

‖δK(τ)‖ dτ .

We estimateδK(τ) using Theorem 1.7 for∂2
xψ(·, τ) and (1.34) withm = 2:

‖δK(τ)‖ ≤ CK−s ‖∂s+2
x ψ(·, τ)‖ .

Recalling thatεK = ψK−IKψ and using Theorem 1.7 to estimate the interpolation error
IKψ − ψ, we obtain the stated result. ⊓⊔



III.1 Space Discretization by Spectral Methods 79

Comparison with the Fourier Galerkin Method. If we use the Galerkin method (1.1)
with the basise−ikx (k = −K/2, . . . ,K/2− 1), then we obtain equations for the coeffi-
cients that are very similar to (1.32):

iċ = DKc+ V̂Kc . (1.37) III:gal-c

Here,V̂K is the matrix with the entry1
2π

∫ π
−π e

−ijx V (x) eikx dx at position(j, k). In the
collocation method (1.32), this integral is simply replaced by the trapezoidal sum approxi-
mation 1

K

∑
l e

−ikxl V (xl) e
imxl , with no harm to the error of the method as Theorem 1.8

shows.

III.1.4 Higher Dimensions: Hyperbolic Cross and Sparse Grids

The above results extend immediately to a full tensor-grid approximation in higher di-
mensions. The number of grid points and Fourier coefficientsto be dealt with is thenKd

in dimensiond with K grid points in each direction. An approach to a reduced compu-
tational cost uses a hyperbolically reduced tensor basis ofexponentials and an associated
sparse grid, leading to a discretization working withO(K(logK)d−1) grid points and
Fourier coefficients. The construction is based on a discrete Fourier transform on sparse
grids given by Hallatschek (1992).

Hyperbolic Cross.Instead of considering the full tensor product basiseik·x = eik1x1 . . . eikdxd

with −K/2 ≤ kn ≤ K/2 − 1, we consider a reduced set of multi-indicesk =
(k1, . . . , kd), which is constructed as follows. We order the set of integers into differ-
ent levels by settingZ0 = {0}, Z1 = {−1}, Z2 = {−2, 1}, Z3 = {−4,−3, 2, 3}, and in
general

Zℓ = {k ∈ Z : −2ℓ−1 ≤ k < −2ℓ−2 or 2ℓ−2 ≤ k < 2ℓ−1} . (1.38) III:Zl

This yields a partition of the integers into different levels as indicated in the following
diagram of the line of integers:

. . . -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 . . .

. . . 4 4 4 4 3 3 2 1 0 2 3 3 4 4 4 4 . . .

We then define thehyperbolic cross

K = KdL = {(k1, . . . , kd) : There areℓ1, . . . , ℓd with ℓ1 + . . .+ ℓd ≤ L

such thatkn ∈ Zℓn for n = 1, . . . , d} . (1.39) III:hyp-cross

We will work with the basis of exponentialseik·x with k ∈ K. As in Lemma 1.4 it is seen
thatK hasO(2L · Ld−1) elements.

Sparse Grid.As we now show, the wave vectors in the hyperbolic cross are ina bijective
correspondence with a set of grid points in[0, 2π]d. Consider first the hierarchical ordering
of grid points in the interval[0, 2π) obtained by settingX0 = {0}, X1 = {π}, X2 =
{π2 , 3π

2 },X3 = {π4 , 3π
4 ,

5π
4 ,

7π
4 }, and in general
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k1

k2

x1

x2

2π

2π
0

0

Fig. 1.4.Hyperbolic cross and sparse grid (L=6).

Xℓ =
{

(2j − 1)
2π

2ℓ
: j = 1, . . . , 2ℓ−1

}
.

Clearly, each grid point inXℓ is in a one-to-one correspondence with an integer inZℓ. We
define thesparse gridcorresponding to the hyperbolic crossK as

Γ = Γ dL = {(x1, . . . , xd) : There areℓ1, . . . , ℓd with ℓ1 + . . .+ ℓd ≤ L

such thatxn ∈ Xℓn for n = 1, . . . , d} . (1.40) III:sparse-grid

We will use quadrature and trigonometric interpolation on this grid.

Smolyak’s Sparse-Grid Quadrature. We consider the trapezoidal (or rectangle) rule
approximation to the one-dimensional integral1

2π

∫ 2π

0 g(x) dx of a 2π-periodic function
g,

Qℓg = 2−ℓ
2ℓ−1∑

j=0

g
(
j
2π

2ℓ

)
= 2−ℓ

ℓ∑

m=0

∑

x∈Xm

g(x) ,

and the difference between two levels,

∆ℓg = Qℓg −Qℓ−1g , ∆0g = Q0g .

As in Section III.1.2, we consider Smolyak’s quadrature fora multi-variate function
f(x1, . . . , xd), which uses values off only on the sparse gridΓ = Γ dL:

SΓ f = SdLf =
∑

ℓ1+...+ℓd≤L
∆ℓ1 ⊗ . . .⊗∆ℓdf . (1.41) III:sparse-smolyak

It has the following useful property.

III:lem:exp Lemma 1.9. Smolyak’s quadrature (1.41) is exact for the exponentialseik·x for all multi-
indicesk in the hyperbolic crossKdL.
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Proof. We first note that the one-dimensional trapezoidal ruleQℓ gives the exact value0
for exponentialseikx wheneverk is not an integral multiple of2ℓ, and it gives the correct
value1 for k = 0. With the formula

SdLf =

L∑

ℓ=0

∆ℓ ⊗ Sd−1
L−ℓf ,

the result then follows by induction over the dimension. ⊓⊔

III:rem:exp Remark 1.10. Unlike the full-grid case, the quadratureSdL is not exact for products
e−ijxeikx with j, k ∈ KdL. The problem arises with terms such asj = (−2L−1, 0, 0, . . . , 0)
andk = (0,−2L−1, 0, . . . , 0). Sincek − j ∈ Kd2L for j, k ∈ KdL, we note that such prod-
ucts are integrated exactly bySd2L, hence with roughly the squared number of grid points.
(Cf. the similar situation in the Hermite case discussed at the end of Section III.1.2.)

Sparse-Grid Trigonometric Interpolation. The one-dimensional trigonometric interpo-
lation of a2π-periodic functionf on a grid of2ℓ equidistant grid points is given as

Iℓg(x) =

2ℓ−1−1∑

k=−2ℓ−1

cℓk e
ikx with cℓk = Qℓ(e

−ikxg) .

We letΛℓ = Iℓ − Iℓ−1 denote the difference operators between successive levels(with
Λ0 = I0). The trigonometric interpolation of a multivariate function f on the full tensor
grid with 2L grid points in every coordinate direction can then be written as

L∑

ℓ1=0

. . .
L∑

ℓd=0

Λℓ1 ⊗ . . .⊗ Λℓdf(x1, . . . , xd) .

Hallatschek (1992) introduces the corresponding operatorwith evaluations off only on
the sparse gridΓ = Γ dL as

IΓ f(x1, . . . , xd) =
∑

ℓ1+...+ℓd≤L
Λℓ1 ⊗ . . .⊗ Λℓdf(x1, . . . , xd) (1.42) III:sparse-ipol-operator

and notes the following important property.

III:lem:sparse-ipol Lemma 1.11. IΓ f interpolatesf on the sparse gridΓ .

Proof. This follows from the observation that the terms omitted from the full-grid inter-
polation operator all vanish on the sparse grid. ⊓⊔

Sparse Discrete Fourier Transform.We observe thatIΓ f(x) for x = (x1, . . . , xd) is a
linear combination of exponentialseik·x with k in the hyperbolic crossK = KdL:



82 III. Numerical Methods for the Time-Dependent Schrödinger Equation

IΓ f(x) =
∑

k∈K
ck e

ik·x .

This defines a discrete Fourier transform

FΓ : C
Γ → C

K :
(
f(x)

)
x∈Γ 7→

(
ck)k∈K . (1.43) III:sparse-dft

With the map that determines the grid values of a trigonometric polynomial from its co-
efficients,

TK : C
K → C

Γ :
(
ck
)
k∈K 7→

(∑

k∈K
cke

ik·x
)
x∈Γ

, (1.44) III:sparse-idft

we have from the interpolation property thatTKFΓ f = f for all f = (f(x))x∈Γ , and
henceFΓ is invertible and

F−1
Γ = TK . (1.45) III:sparse-inverse

Both FΓ and its inverse can be implemented withO(2L · Ld) operations, using one-
dimensional FFTs and hierarchical bases; see Hallatschek (1992) and Gradinaru (2007).

There is no discrete Parseval formula forFΓ , but by Remark 1.10, the following
restricted Parseval relation is still valid: with the innerproduct〈f | g〉Γ = SΓ (fg) onΓ
and the Euclidean inner product〈· | ·〉K onK,

〈F−1
Γ c | F−1

Γ d〉Γ = 〈c | d〉K if ck = dk = 0 for k ∈ KdL \ KdL/2 . (1.46) III:sparse-parseval

Approximation by Sparse-Grid Trigonometric Interpolatio n. Error bounds are given
by Hallatschek (1992) in the maximum norm, and by Gradinaru (2008) inL2 and related
norms. TheL2 error bound reads

‖IΓ f − f‖ ≤ C(d, s) (L + 1)d−1 (2L)−s ‖∂s+1
x1

. . . ∂s+1
xd

f‖ . (1.47) III:sparse-ipol-error

The estimate is obtained by carefully estimating the termsΛℓ1 ⊗ . . . ⊗ Λℓdf that have
been omitted in (1.42).

Collocation of the Schr̈odinger Equation on Sparse Grids.Gradinaru (2008) studies
the collocation method, which approximates the solution bya trigonometric polynomial
with coefficients on the hyperbolic cross,

ψK(x, t) =
∑

k∈K
ck(t) e

ik·x , (1.48) III:sparse-psiK

and requires the Schrödinger equation to hold in the pointsof the sparse grid. This yields
the system for the Fourier coefficientsc = (ck)k∈K,

iċ = DKc+ FΓVΓF−1
Γ c , (1.49) III:sparse-ode

where(DKc)k = 1
2µ |k|2ck for k ∈ K, andVΓ is the diagonal matrix with entriesV (x)

for x ∈ Γ . Gradinaru (2008) shows that the error of the collocation method over bounded
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time intervals is bounded byO(Ld−1 (2L)−s) if mixed derivatives up to orders + 2 in
each coordinate direction are bounded inL2.

An unpleasant feature in (1.49) is the fact that the matrixFΓVΓF−1
Γ is not Hermitian,

since the sparse-grid Fourier transformFΓ is not a scalar multiple of a unitary operator,
unlike the full tensor-grid case. This can give numerical artefacts such as the loss of con-
servation of norm and in theory may lead to an exponential, instead of linear, error growth
in time, with a rate that is given by a bound of the skew-Hermitian part ofFΓVΓF−1

Γ .
Moreover, some of the time-stepping methods considered in the subsequent sections are
not applicable in the case of non-Hermitian matrices.

Discretizations on Sparse Grids Having Hermitian Matrices. Are there methods with
similar complexity and approximation properties to the sparse-grid collocation method
but which have a Hermitian matrix? We start from the interpretation of the collocation
method as a Galerkin method with trapezoidal rule approximation of the integrals in the
matrix elements, as noted at the end of Section III.1.3, and aim for a multi-dimensional,
sparse-grid extension that approximates the matrix elements by Smolyak’s quadrature.

We consider the inner product onCΓ defined by Smolyak’s quadrature on the sparse
grid,

〈f | g〉Γ = SΓ (fg) ,

and the Euclidean inner product〈· | ·〉K on CK . With respect to these inner products, we
take the adjoint(F−1

Γ )∗ of F−1
Γ :

〈F−1
Γ a | f〉Γ = 〈a | (F−1

Γ )∗f〉K ∀ f ∈ C
Γ , a ∈ C

K.

Then,(F−1
Γ )∗f =

(
SΓ (e−ik·xf)

)
k∈K , and we obtain that

(F−1
Γ )∗VΓF−1

Γ =
(
SΓ
(
e−ij·xV (x) eik·x

))
j,k∈K

is the Hermitian matrix that contains the sparse-grid quadrature approximations to the
Galerkin matrix elements.

Instead of (1.49) we would like to determine the coefficientsof (1.48) from

iċ = DKc+ (F−1
Γ )∗VΓF−1

Γ c . (1.50) III:sparse-ode-symm

This method can be rewritten as a quasi-Galerkin method on the hyperbolic-cross space
VK = span{eik·x : k ∈ K} : determineψK(t) ∈ VK (i.e., of the form (1.48)) such that

〈
ϕK
∣∣∣ i ∂ψK

∂t

〉
=
〈
ϕK
∣∣∣ − 1

2µ
∆ψK

〉
+
〈
ϕK
∣∣∣V ψK

〉
Γ

∀ϕK ∈ VK . (1.51) III:sparse-qgal

Here, the last inner product is the discrete inner product onthe sparse grid instead of
the usualL2 inner product. Unfortunately, it appears that this doesnot give a convergent
discretization for the hyperbolic crossK = KdL and the sparse gridΓ = Γ dL of the same
levelL. We describe three ways to cope with this difficulty:
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1. Discrete Galerkin Method with a Simplified Mass Matrix:We replace theL2 inner
products in (1.51) by the discrete inner product onΓ = Γ dL. Then we obtain a standard
Galerkin method with a discrete inner product. The associated orthogonal projection to
VK is just the interpolationIΓ . Optimal error bounds are then obtained with the standard
proof for Galerkin methods, as in Theorem 1.3. However, since the exponentialseik·x, k ∈
K, do not form an orthonormal basis with respect to the discrete inner product, there are
now non-diagonal matrices

MK =
(
mjk

)
j,k∈K =

(
〈eij·x | eik·x〉Γ

)
j,k∈K , TK =

1

2µ

(
j · k mjk

)
j,k∈K

in the differential equations for the coefficients:

MKċ = TKc+ (F−1
Γ )∗VΓF−1

Γ c .

By (1.46), the mass matrix partitioned into blocks corresponding toKdL/2 andKdL \KdL/2
takes the form

MK =

(
I B∗

B N

)

with sparse matricesB andN . An approximate Choleski factor ofMK is given by

C =

(
I 0
B I

)
with C−1 =

(
I 0

−B I

)
and CC∗ =

(
I B∗

B I +BB∗

)
,

where only the lower diagonal block differs from that inMK. ReplacingMK byCC∗, we
obtain forb = C∗c

ḃ = C−1TK(C−1)∗b + C−1(F−1
Γ )∗VΓF−1

Γ (C−1)∗b . (1.52) III:fourier-b-eq

Since only the lower diagonal block ofMK has been changed, we can still get error
bounds as for the full Galerkin method, but with2−L replaced by2−L/2.

2. Discrete Galerkin Method with Refined Sparse Grid.By Lemma 1.9, the mass ma-
trix becomes the identity matrix if we choose the finer grid

Γ = Γ d2L

with 2L instead ofL levels and thus, alas, roughly the squared number of grid points.
In that case, theL2 inner products (1.51) are equal to the discrete inner products onΓ ,
and we obtain a standard Galerkin method with a discrete inner product. The associated
orthogonal projection toVK isPKIΓ , wherePK is the orthogonal projection with respect
to theL2 inner product. Optimal error bounds are then obtained with the standard proof
for Galerkin methods, as in Theorem 1.3.

3. Galerkin Method with an Approximated Potential.We use the standard Galerkin
method withL2 inner products, and compute the matrix elements of the potential,
〈eij·x |V | eik·x〉, exactlyfor an approximated potentialV (x) ≈ ∑

m∈M vme
im·x (pos-

sibly over a coarser hyperbolic crossM ⊂ K), noting that〈eij·x | eim·xeik·x〉 6= 0 only
for j = k + m. This requiresO(#M · #K) operations for computing a matrix-vector
product.
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III.2 Polynomial Approximations to the Matrix
Exponential

III:sect:poly
After space discretization, we are left with a linear systemof differential equations

iẏ = Ay (2.1) III:lin-ode

with a Hermitian matrixA of large dimension and of large norm, such as (1.3) or (1.32)
or (1.50) or (1.52). The latter example also shows how to dealwith the presence of a mass
matrix by a (possibly incomplete) Choleski decomposition.The solution to the initial
valuey(0) = y0 is given by the matrix exponential

y(t) = e−itAy0 . (2.2) III:matrix-exp

We study time stepping methods that advance the approximatesolution1 from timetn to
tn+1 = tn+∆t, fromyn to yn+1. In the present section we consider methods that require
only multiplications of the matrixA with vectors, and hence are given by polynomial
approximationsP (∆tA) to the exponential:

yn+1 = P (∆tA) yn .

We consider in detail theChebyshev method, where the polynomial is chosena priori from
given information on the extreme eigenvalues ofA, and theLanczos method, where the
polynomial is determined by a Galerkin method on the Krylov subspace, which consists
of the products of all polynomials of∆tA of a given degree with the starting vector. In
the Lanczos method, a different polynomial is implicitly selected in every time step.

We mention in passing that there are further interesting methods that require only
matrix-vector products withA: the Leja point methodhas similar approximation prop-
erties to the Chebyshev method but in contrast to the Chebyshev method, higher-degree
polynomials of the family are constructed by reusing the computations for the lower-
degree polynomials, cf. Caliari, Vianello & Bergamaschi (2004); explicitsymplectic meth-
odspreserve the symplectic structure of the differential equation, see Gray & Manolopou-
los (1996) and Blanes, Casas & Murua (2006).

III.2.1 Chebyshev Method

A near-optimal polynomial approximation to the exponential is given by its truncated
Chebyshev expansion. We describe this approach, which in the context of Schrödinger
equations was put forward by Tal-Ezer & Kosloff (1984), and give an error analysis based
on Bernstein’s theorem on polynomial approximations to analytic functions on an interval.
We refer to Rivlin (1990) for background information on Chebyshev polynomials and
to Markushevich (1977), Chap. III.3, for the polynomial approximation theory based on
Faber polynomials.

1 The time step numbern will always be indicated as superscript in the notation.
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Chebyshev Polynomials.For every non-negative integerk, the function defined by

Tk(x) = cos(kθ) with θ = arccosx ∈ [0, π], for x ∈ [−1, 1] (2.3) III:cheb-cos

is in fact a polynomial of degreek, named thekth Chebyshev polynomial. This fact is
seen from the recurrence relation

Tk+1(x) = 2xTk(x) − Tk−1(x) , k ≥ 1 , (2.4) III:cheb-rec

starting fromT0(x) = 1 andT1(x) = x, which is obtained from the trigonometric iden-
tity cos((n + 1)θ) + cos((n − 1)θ) = 2 cos θ cos(nθ). The Chebyshev polynomials are
orthogonal polynomials with respect to the weight function(1 − x2)−1/2 on [−1, 1]:

∫ 1

−1

Tj(x)Tk(x)
dx√

1 − x2
= 0 for j 6= k , (2.5) III:cheb-orth

as is seen by substitutingx = cos θ anddx/
√

1 − x2 = dθ and using the orthogonality
of the complex exponentials.

Another useful formula is

2Tk(x) =
(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k
, (2.6) III:cheb-sqrt-formula

again verified by substitutingx = cos θ. TheJoukowski transform

w = Φ(z) = z +
√
z2 − 1 , z = Ψ(w) =

1

2

(
w +

1

w

)
(2.7) III:cheb-joukowski

is the conformal map between the exterior of the interval[−1, 1] and the exterior of the
unit disk, |w| > 1. (The branch of the square root is chosen such that

√
z2 − 1 ∼ z for

z → ∞.) The level setsΓr = {z : |Φ(z)| = r} = {Ψ(w) : |w| = r} for r > 1 are
ellipses with foci±1, major semi-axisr + r−1 and minor semi-axisr − r−1. Since the
Laurent expansion at∞ of (z −

√
z2 − 1)k contains only powersz−j with j ≥ k, the

integral of that function over a closed contourΓ encircling the interval[−1, 1] vanishes
by Cauchy’s theorem. With Cauchy’s integral formula we thusobtain from (2.6)

2Tk(x) =
1

2πi

∫

Γ

Φ(z)k

z − x
dz , x ∈ [−1, 1], (2.8) III:cheb-faber

which establishes an important relationship between the Chebyshev polynomials and the
conformal map: the Chebyshev polynomials are theFaber polynomialsfor the interval
[−1, 1]; cf. Markushevich (1977), Sect. III.3.14.

Chebyshev and Fourier Series.Given a (smooth) complex-valued functionf(x) on the
interval−1 ≤ x ≤ 1, we expand the2π-periodic, symmetric function

g(θ) = f(cos θ)

as a Fourier series:
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g(θ) =

∞∑

k=−∞
ck e

ikθ with ck =
1

2π

∫ π

−π
e−ikθ g(θ) dθ

or in fact, by the symmetryg(−θ) = g(θ),

g(θ) = c0 + 2

∞∑

k=1

ck cos(kθ) with ck =
1

π

∫ π

0

cos(kθ) g(θ) dθ .

Substitutingx = cos θ anddx/
√

1 − x2 = dθ, we obtain theChebyshev expansion

f(x) = c0 + 2
∞∑

k=1

ck Tk(x) with ck =
1

π

∫ 1

−1

Tk(x) f(x)
dx√

1 − x2
. (2.9) III:cheb-series

Chebyshev Approximation of Holomorphic Functions.We study the approximation of
a holomorphic functionf(x) by the truncated series withm terms,

Smf(x) = c0 + 2

m−1∑

k=1

ck Tk(x) ,

which is a polynomial of degreem − 1. The following is a version of a theorem by
Bernstein (1912); see Markushevich (1977), Sect. III.3.15. HereΦ(z) = z +

√
z2 − 1 is

again the conformal map (2.7) from the complement of the interval [−1, 1] to the exterior
of the unit disk, andΨ(w) = 1

2 (w + 1
w ) is the inverse map.

Theorem 2.1 (Chebyshev Approximation).Let r > 1, and suppose thatf(z) is holo-III:thm:bernstein
morphic in the interior of the ellipse|Φ(z)| < r and continuous on the closure. Then, the
error of the truncated Chebyshev series is bounded by

|f(x) − Smf(x)| ≤ 2µ(f, r)
r−m

1 − r−1
for − 1 ≤ x ≤ 1,

with the mean valueµ(f, r) = 1
2πr

∫
|w|=r |f(Ψ(w))| · |dw|.

Proof. We start from the Cauchy integral formula over the ellipseΓr = {z : |Φ(z)| =
r} = {Ψ(w) : |w| = r} and substitutez = Ψ(w):

f(x) =
1

2πi

∫

Γr

f(z)

z − x
dz =

1

2πi

∫

|w|=r
f(Ψ(w))

Ψ ′(w)

Ψ(w) − x
dw . (2.10) III:cheb-f-int

We expand in negative powers ofw,

Ψ ′(w)

Ψ(w) − x
=

∞∑

k=0

ak(x)w
−k−1 for |w| > 1, (2.11) III:cheb-res

where the Taylor coefficients at∞ are given as
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ak(x) =
1

2πi

∫

|w|=r
wk

Ψ ′(w)

Ψ(w) − x
dw =

1

2πi

∫

Γr

Φ(z)k

z − x
dz .

By (2.8), these coefficients turn out to be simply

ak(x) = 2Tk(x).

Inserting (2.11) into (2.10) therefore yields

f(x) − Smf(x) =
1

2πi

∫

|w|=r
f(Ψ(w)) · 2

∞∑

k=m

Tk(x)w
−k−1 dw .

Since|Tk(x)| ≤ 1 for −1 ≤ x ≤ 1, we have for|w| = r > 1

∣∣∣
∞∑

k=m

Tk(x)w
−k−1

∣∣∣ ≤
∞∑

k=m

r−k−1 =
r−m−1

1 − r−1
,

and the result follows. ⊓⊔

Chebyshev Approximation of Complex Exponentials.The complex exponentialeiωx

is an entire function, and we can chooser in Theorem 2.1 dependent onm to balance the
growth ofµ(eiωz , r) with r against the decay ofr−m. This gives the following corollary
showing superlinear convergence after a stagnation up tom ≈ |ω|. Since the polynomial
must capture the extrema and zeros ofcos(ωx) andsin(ωx) for a uniform approximation,
it is obvious that at least a degreem proportional to|ω| is needed to obtain an error
uniformly smaller than 1. Once this barrier is surmounted, the error decays very rapidly
with growing degreem.

Theorem 2.2 (Eventual Superlinear Convergence toeiωωωx). The error of the ChebyshevIII:thm:cheb-exp
approximationpm−1(x) of degreem − 1 to the complex exponentialeiωx with realω is
bounded by

max
−1≤x≤1

|pm−1(x) − eiωx| ≤ 4
(
e1−(ω/2m)2 |ω|

2m

)m
for m ≥ |ω| . (2.12) III:cheb-exp-error

Proof. We haveµ(eiωz , r) ≤ maxz∈Γr |eiωz | = e|ω|(r−r
−1)/2, where the maximum is

attained atz = ± 1
2 (ir+ 1

ir ) on the minor semi-axis. Theorem 2.1 thus gives us the bound

max
−1≤x≤1

|pm−1(x) − eiωx| ≤ 2r−m

1 − r−1
e|ω|(r−r

−1)/2 .

Choosingr = 2m/|ω| ≥ 2 then yields the stated result, which could be slightly refined.
⊓⊔
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IV:fig:cheb-err
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Fig. 2.1. Chebyshev approximation ofeiωx. Maximum error on[−1, 1] versus degree, forω =
4, 8, 16, 32. Dashed: Error bounds of Theorem 2.2.

The Chebyshev coefficients ofeiωx are given explicitly by Bessel functions of the first
kind: by formula (9.1.21) in Abramowitz & Stegun (1965),

ck =
1

π

∫ π

0

eiω cos θ cos(kθ) dθ = ikJk(ω) . (2.13) III:cheb-bessel

Transforming the Interval. Fromeiωx with −1 ≤ x ≤ 1, uniform polynomial approxi-
mation ofe−iξ for α ≤ ξ ≤ β is obtained by transforming

x =
2

β − α

(
ξ − α+ β

2

)
, ξ =

α+ β

2
+ x

β − α

2
.

We then approximatee−iξ = e−i(α+β)/2 e−ix(β−α)/2 using e−ix(β−α)/2 ≈ c0 +
2
∑m−1
k=1 ck Tk(x) with ck = ikJk

(
−β−α

2

)
= (−i)kJk

(
β−α

2

)
, so that

e−iξ ≈ e−i(α+β)/2

(
c0 + 2

m−1∑

k=1

ck Tk

(
2

β − α

(
ξ − α + β

2

)))
for α ≤ ξ ≤ β .

Chebyshev Method for the Matrix Exponential Operator. LetA be a Hermitian matrix
all of whose eigenvalues are known to lie in the interval[a, b]. As proposed by Tal-Ezer
& Kosloff (1984), we approximate the action of the matrix exponential on a vectorv by
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e−i∆tAv ≈ Pm−1(∆tA)v ,

where

Pm−1(∆tA)v = e−i∆t(a+b)/2
(
c0v + 2

m−1∑

k=1

ck Tk

(
2

(b − a)

(
A− (a + b)

2
I
))

v

)

(2.14) III:cheb-exp-A

with ck = (−i)kJk(∆t(b − a)/2). We observe that the right-hand side is in fact a func-
tion of the product∆tA. The actual way to compute (2.14) is by a recursive algorithm
proposed by Clenshaw (1962) for the evaluation of truncatedChebyshev expansions of
functions.

Algorithm 2.3 (Clenshaw Algorithm). Let X =
2

(b − a)

(
A − (a + b)

2
I
)

, initialize

dm+1 = dm = 0 and compute recursively

dk = ckv + 2Xdk+1 − dk+2 for k = m− 1,m− 2, . . . , 0 .

Then, the approximation (2.14) is given as

Pm−1(∆tA)v = d0 − d2 .

This identity is readily verified using the Chebyshev recurrence relation (2.4) for the
terms in the sum, descending from the terms of highest degree. The algorithm requires
m matrix-vector multiplications to computePm−1(∆tA)v and needs to keep only three
vectors in memory.

Theorem 2.4 (Error of the Chebyshev Method).LetA be a Hermitian matrix with allIII:thm:cheb-method
its eigenvalues in the interval[a, b], and letv be a vector of unit Euclidean norm. Then,
the error of the Chebyshev approximation (2.14) is bounded in the Euclidean norm by

‖Pm−1(∆tA)v − e−i∆tAv‖ ≤ 4
(
e1−(ω/2m)2 ω

2m

)m
for m ≥ ω

with ω = ∆t (b − a)/2.

Proof. For a diagonal matrixA, the estimate follows immediately from Theorem 2.2
and the linear transformation between the intervals[∆ta,∆t b] and[−1, 1]. Since every
Hermitian matrixA can be unitarily transformed to diagonal form, we obtain theresult as
stated. ⊓⊔

Step Size Restriction.The conditionm ≥ ω can be read as a restriction of the step size
for given degreem:

∆t ≤ 2m

b− a
.

This can also be viewed as saying that at least one matrix-vector multiplication is needed
on every time interval of length1/(b − a). In the treatment of the Schrödinger equation,
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this length shrinks as the spatial discretization is refined: for illustration, consider Fourier
collocation in one space dimension, withK Fourier modes. For the matrixA = DK +
FKVKF−1

K of (1.32), the eigenvalues lie in the interval[a, b] with

a = min
x
V (x) , b =

1

2µ

K2

4
+ max

x
V (x) .

For largeK, or small∆x = 2π/K, we have thatω = ∆t(b − a)/2 is approximately
proportional to∆tK2, or

ω ∼ ∆t

∆x2
.

The conditionm ≥ ω for the onset of error reduction therefore translates into astep-size
restriction

∆t ≤ Cm∆x2 , (2.15) III:cheb-dtdx

and the number of matrix-vector multiplications to cover a given time interval is thus
inversely proportional to∆x2.

III.2.2 Lanczos Method
III:subsec:lanczos

A different approach to approximately computinge−i∆tAv using only the action ofA on
vectors is based on a Galerkin approximation toiẏ = Ay on the Krylov space spanned
by v,Av, . . . , Am−1v. A suitable basis for this space is given by the Lanczos iteration,
named after Lanczos (1950), which has become a classic in numerical linear algebra pri-
marily because of its use for eigenvalue problems and solving linear systems; see, e.g.,
Golub & Van Loan (1996), Chap. 9, and Trefethen & Bau (1997), Chap. VI. The use of the
Lanczos method for approximatinge−i∆tAv was first proposed by Park & Light (1986),
properly in the context of approximating the evolution operator of the Schrödinger equa-
tion. Krylov subspace approximation to the matrix exponential operator has since been
found useful in a variety of application areas — and has been honourably included as
the twentieth of the “Nineteen dubious ways to compute the exponential of a matrix”
by Moler & Van Loan (2003). Error analyses, both for the Hermitian and non-Hermitian
case, have been given by Druskin & Knizhnerman (1995), Hochbruck & Lubich (1997),
and Saad (1992).

Krylov Subspace and Lanczos Basis.Let A be anN × N Hermitian matrix, and letv
be a non-zero complexN -vector. Themth Krylov subspaceof CN with respect toA and
v is

Km(A, v) = span(v,Av,A2v, . . . , Am−1v) , (2.16) III:krylov-space

that is, the space of all polynomials ofA up to degreem− 1 acting on the vectorv.
TheHermitian Lanczos methodbuilds an orthonormal basis of this space by Gram-

Schmidt orthogonalization: beginning withv1 = v/‖v‖, it constructsvk+1 recursively
for k = 1, 2, . . . by orthogonalizingAvk against the previousvj and normalizing:
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τk+1,k vk+1 = Avk −
k∑

j=1

τjk vj (2.17) III:krylov-lanczos-iter

with τjk = v∗jAvk for j ≤ k, and withτk+1,k > 0 determined such thatvk+1 is of
unit Euclidean norm — unless the right-hand side is zero, in which case the dimension of
Km(A, v) is k for m ≥ k and the process terminates.

By themth step, the method generates theN ×m matrixVm = (v1 . . . vm) having
the orthonormal Lanczos vectorsvk as columns, and them×m matrixTm = (τjk) with
τjk = 0 for j − k > 1. Because of (2.17), these matrices are related by

AVm = VmTm + τm+1,mvm+1e
T
m, (2.18) III:krylov-AV

whereeTm = (0 . . . 0 1) is themth unit vector. By the orthonormality of the Lanczos
vectorsvk, this equation implies

Tm = V ∗
mAVm , (2.19) III:krylov-T

which shows in particular thatTm is a Hermitian matrix, and hence a tridiagonal matrix:
τjk = 0 for |j − k| > 1. The sum in (2.17) therefore actually contains only the two
terms forj = k − 1, k. For a careful practical implementation, error propagation and
the loss of orthogonality due to rounding errors are a concern for largerm, and (selec-
tive) reorthogonalization can substantially improve the stability properties; see Golub &
Van Loan (1996), Sect. 9.2. The following is a standard version of the Lanczos iteration
without reorthogonalization of the Lanczos vectors.

Algorithm 2.5 (Hermitian Lanczos Algorithm Without Reorth ogonalization).Given
a Hermitian matrixA and a vectorv of unit norm, the algorithm computes the Lanczos
vectorsv1, . . . , vm and the entriesαj = τj,j andβj+1 = τj+1,j of the tridiagonal ma-
trix Tm. After initializingv1 := v, v0 := 0, β1 := 0, the Lanczos iteration runs as follows,
for j = 1, . . . ,m:

u := Avj − βjvj−1 , αj := 〈vj |u〉
u := u− αjvj , βj+1 := ‖u‖
vj+1 := u/βj+1 .

Galerkin Method on the Krylov Subspace.Following Park & Light (1986), we consider
the Galerkin method (1.1) for the approximation of the initial value problem

iẏ = Ay , y(0) = v with ‖v‖ = 1

on the Krylov subspaceKm(A, v) with m ≪ N (m ≤ 20, say): we determine an ap-
proximationum(t) ∈ Km(A, v) with um(0) = v such that at every instantt, the time
derivative satisfies

〈wm | iu̇m(t) −Aum(t)〉 = 0 ∀wm ∈ Km(A, v) .
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Writing um(t) in the Lanczos basis,

um(t) =

m∑

k=1

ck(t) vk = Vmc(t) with c(t) =
(
ck(t)

)
,

we obtain for the coefficients the linear differential equation

iċ(t) = Tmc(t) , c(0) = e1 = (1, 0, . . . , 0)T

with the Lanczos matrixTm = (v∗jAvk)
m
j,k=1 of (2.19). Clearly, the solution is given by

c(t) = e−itTme1. The Galerkin approximationum(t) = Vmc(t) at time∆t is thus the
result of the following algorithm.

Algorithm 2.6 (Lanczos Method for the Exponential).With the Lanczos matricesVm
andTm, approximate

e−i∆tAv ≈ Vm e
−i∆tTm e1 . (2.20) III:krylov-exp

For the small tridiagonal Hermitian matrixTm, the exponential is readily computed from
a diagonalization ofTm. The algorithm needs to keep all the Lanczos vectors in memory,
which may not be feasible for large problems. In such a situation, the Lanczos iteration
may be run twice with only four vectors in memory: in a first runfor computingTm, and
in a second run (without recomputing the already known innerproducts) for forming the
linear combination of the Lanczos vectors according to (2.20).

By the interpretation of (2.20) as a Galerkin method, we knowfrom Sect. II.1 that
norm and energy are preserved.

A Posteriori Error Bound and Stopping Criterion. From Theorem II.1.5 with the
Krylov subspace as approximation space we have the error bound

‖um(t) − y(t)‖ ≤
∫ t

0

dist
(
Aum(s),Km(A, v)

)
ds .

By (2.18) we have

Aum(s) = AVm e
−isTm e1 = VmTm e

−isTm e1 + τm+1,m vm+1 e
T
m e

−isTm e1

and therefore

dist
(
Aum(s),Km(A, v)

)
= τm+1,m

∣∣[e−isTm
]
m,1

∣∣ ,

where[·]m.1 denotes the(m, 1) element of a matrix. This gives us the following com-
putable error bound.

Theorem 2.7 (A Posteriori Error Bound). LetA be a Hermitian matrix, andv a vectorIII:thm:krylov-apost
of unit Euclidean norm. Then, the error of themth Lanczos approximation toe−i∆tAv is
bounded by

‖Vme−i∆tTm e1 − e−i∆tAv‖ ≤ τm+1,m

∫ ∆t

0

∣∣[e−isTm
]
m,1

∣∣ ds . ⊓⊔
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IV:fig:lanczos-err
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Fig. 2.2.Errors and error estimators (2.21) and (2.22) of the Lanczosmethod.

If we approximate the integral on the right-hand side by the right-endpoint rectangle
rule, we arrive at astopping criterionfor the Lanczos iteration (for given∆t) or alterna-
tively at astep-size selection criterion(for givenm),

∆t τm+1,m

∣∣[e−i∆t Tm
]
m,1

∣∣ ≤ tol (2.21) IV:lanczos-rectangle-rule

for an error tolerancetol, or without the factor∆t for an error tolerance per unit step. This
criterion has previously been considered with different interpretations by Saad (1992) and
Hochbruck, Lubich & Selhofer (1998). In view of Theorem 2.7,a better choice is to take
a quadrature rule with more than one function evaluation, for example, the Simpson rule:

∆t τm+1,m

(
2

3

∣∣[e−i∆t
2
Tm
]
m,1

∣∣+ 1

6

∣∣[e−i∆t Tm
]
m,1

∣∣
)
≤ tol. (2.22) IV:lanczos-simpson-rule

With a diagonalizedTm, this is computed at no extra cost..

Example. In Fig. III.2.2 we show the actual errors and the above error estimates of the
Lanczos method versus the iteration numberm. The method is applied with the tridiag-
onal matrix∆tA = ω

2 tridiag(−1, 2,−1) of dimension 10000 withω = 4, 8, 16, 32. The
eigenvalues of∆tA are in the interval[0, 2ω]. The vectorv was chosen as a random vec-
tor of unit norm. It is instructive to compare the errors withthe nearly identical errors in
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Fig. III.2.1 for the corresponding values ofω. We further note thatω2 = c∆t/∆x2 can be
interpreted as a CFL number for a finite difference discretization of the one-dimensional
free Schrödinger equationi ∂tψ = −c ∂2

xψ.

Lanczos Method for Approximating fff (AAA)vvv. The following lemma follows directly from
the Lanczos relations (2.18) and (2.19).

III:lem:lanczos Lemma 2.8. LetA be a Hermitian matrix andv a vector of unit norm.
(a) If all eigenvalues ofA are in the interval[a, b], then so are those ofTm.
(b) For every polynomialpm−1 of degree at mostm− 1, it holds that

pm−1(A)v = Vm pm−1(Tm) e1 . (2.23) III:krylov-p

Proof. (a) If θ is an eigenvalue ofTm to the eigenvectorw of unit norm, thenu = Vmw
is again of unit norm, and by (2.19),θ = w∗Tmw = u∗Au, which is in[a, b].

(b) Clearly,v = Vme1. From (2.18) it follows by induction overk = 1, 2, . . . that

AkVme1 = VmT
k
me1

as long as the lower left entryeTmT
k−1
m e1 = 0. SinceT k−1

m is a matrix withk − 1 subdi-
agonals, this holds fork ≤ m− 1. ⊓⊔

For any complex-valued functionf defined on[a, b], we havef(A) given via the
diagonalizationA = U diag(λj)U∗ asf(A) = U diag(f(λj))U

∗. Justified by (a) and
motivated by (b), we can consider the approximation

f(A)v ≈ Vm f(Tm) e1 . (2.24) III:krylov-f

For f(x) = e−i∆t x this is (2.20). Lemma 2.8 immediately implies the followinguseful
approximation result.

Theorem 2.9 (Optimality of the Lanczos Method).Letf be a complex-valued functionIII:thm:krylov-f
defined on an interval[a, b] that contains the eigenvalues of the Hermitian matrixA, and
let v be a vector of unit norm. Then, the error of the Lanczos approximation tof(A)v is
bounded by

‖Vmf(Tm)e1 − f(A)v‖ ≤ 2 inf
pm−1

max
x∈[a,b]

|pm−1(x) − f(x)| ,

where the infimum is taken over all polynomials of degree at mostm− 1.

Proof. By Lemma 2.8 (b), we have for every polynomialpm−1 of degree at mostm− 1,

Vmf(Tm)e1 − f(A)v = Vm
(
f(Tm) − pm−1(Tm)

)
e1 −

(
f(A) − pm−1(A)

)
v.

Diagonalization ofA andTm and Lemma 2.8 (a) show that each of the two terms to the
right is bounded bymaxx∈[a,b] |f(x) − pm−1(x)|. ⊓⊔
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Error Bound of the Lanczos Method for the Matrix Exponential Operator. Combin-
ing Theorems 2.9 and 2.2, together with the linear transformation from the interval[a, b]
to [−1, 1], yields the following result.

Theorem 2.10 (Eventual Superlinear Error Decay).LetA be a Hermitian matrix allIII:thm:krylov-exp
of whose eigenvalues are in the interval[a, b], and letv be a vector of unit Euclidean
norm. Then, the error of the Lanczos method (2.20) is boundedby

‖Vme−i∆t Tme1 − e−i∆tAv‖ ≤ 8
(
e1−(ω/2m)2 ω

2m

)m
for m ≥ ω

with ω = ∆t (b − a)/2. ⊓⊔

We remark that the step-size restriction (2.15) of the Chebyshev method applies to the
Lanczos method as well.

III.3 Splitting and Composition Methods
III:sect:split

The methods of the previous section have the attractive feature that they only require
matrix-vector products with the discretized HamiltonianA of (2.1). However, the maxi-
mum permitted step size is inversely proportional to the norm ofA, which leads to a time
step restriction to∆t = O(∆x2), as we recall from (2.15). The splitting methods consid-
ered in this section can achieve good accuracy with no such restriction, provided that the
wave function has sufficient spatial regularity.

III.3.1 Splitting Between Kinetic Energy and Potential

We consider the Schrödinger equation

iψ̇ = Hψ with H = T + V , (3.1) III:split-schrod

whereT andV are the kinetic energy operator and the potential, respectively, or the
corresponding discretized operators. We will assume no bound on the self-adjoint operator
or matrixT . In our theoretical results we will assume bounds of the potential V , but the
method to be described can work well under weaker assumptions. On the practical side,
the basic assumption is that the equations

iθ̇ = Tθ and iφ̇ = V φ

can both be solved more easily than the full equation (3.1). As we have seen in Chap. I,
on the analytical level this is definitely the case in the non-discretized Schrödinger equa-
tion: the free Schrödinger equation (onlyT ) is solved by Fourier transformation, and the
equation with only the potentialV is solved by multiplying the initial data with the scalar
exponentiale−iV (x) at every space pointx. This situation transfers, in particular, to the
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Fourier collocation method of Section III.1.3, where solving the differential equations for
the kinetic and potential parts in (1.32) or (1.33) is done trivially, using the exponentials
of diagonal matrices and FFTs.

Strang Splitting. We consider time stepping from an approximationψn at timetn to the
new approximationψn+1 at timetn+1 = tn +∆t by

ψn+1 = e−i
∆t
2
V e−i∆t T e−i

∆t
2
V ψn . (3.2) III:split-strang

This symmetric operator splitting was apparently first studied by Strang (1968) and in-
dependently by Marchuk (1968) in the context of dimensionalsplitting of advection
equations. It was proposed, in conjunction with the Fouriermethod in space, for non-
linear Schrödinger equations by Hardin & Tappert (1973) and rediscovered for the linear
Schrödinger equation, in the disguise of the Fresnel equation of laser optics, by Fleck,
Morris & Feit (1976). The scheme was introduced to chemical physics by Feit, Fleck &
Steiger (1982). In combination with Fourier collocation inspace, the method is usually
known as thesplit-step Fourier methodin the chemical and physical literature.

Split-Step Fourier Method. In the notation of Sect. III.1.3, we recall the differential
equation (1.33) for the vectoru = (uj) of grid valuesuj(t) = ψK(xj , t):

iu̇ = F−1
K DKFKu+ VKu

with the diagonal matricesDK = 1
2µ diag(k2) andVK = diag

(
V (xj)

)
, wherek andj

range from−K/2 toK/2 − 1. With method (3.2), a time step is computed in a way that
alternates between pointwise operations and FFTs.

Algorithm 3.1 (Split-Step Fourier Method). The approximation at timetn is overwrit-
ten by that at timetn+1 in the following substeps:

1. multiply: uj := e−i
∆t
2
V (xj)uj (j = −K/2, . . . ,K/2 − 1)

2. FFT: u := FKu
3. multiply: uk := e−i∆tk

2/(2µ)uk (k = −K/2, . . . ,K/2 − 1)
4. inverse FFT:u := F−1

K u

5. multiply: uj := e−i
∆t
2
V (xj)uj (j = −K/2, . . . ,K/2 − 1).

The exponentials in Substep 5 and Substep 1 of the next time step can be combined into
a single exponential if the output at timetn+1 is not needed.

Unitarity, Symplecticity, Time-Reversibility. The Strang splitting has interesting struc-
ture-preserving properties. For self-adjointT andV , the exponentialse−i∆t T ande−i

∆t
2
V

are unitary (they preserve the norm) and symplectic (they preserve the canonical symplec-
tic two-formω(ξ, η) = −2 Im 〈ξ | η〉, see Theorem II.1.2), and so does their composition.
The time-step operator of the Strang splitting is thus both unitary and symplectic. We
remark that neither holds for the Chebyshev method, whereasthe Lanczos method is uni-
tary, but symplectic only in the restriction to the Krylov subspace, which changes from
one time step to the next. Moreover, the Strang splitting is time-reversible: a step of the
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method starting fromψn+1 with negative step size−∆t leads us back to the oldψn, or
more formally, exchangingn ↔ n + 1 and∆t ↔ −∆t in the method gives the same
method again. We note that neither the Chebyshev method nor the Lanczos method are
time-reversible.

III.3.2 Error Bounds for the Strang Splitting

For boundedT andV , Taylor expansion of the exponentials readily shows

e−i
∆t
2
V e−i∆t T e−i

∆t
2
V = e−i∆t(T+V ) + O

(
∆t3(‖T ‖ + ‖V ‖)3

)
.

However, such an error bound is of no use whenT or V are of large norm. Since‖T ‖ ∼
(∆x)−2 (as in (2.15)), this error bound would indicate a small erroronly for∆t≪ ∆x2,
whereas numerical experiments clearly indicate that the error of the Strang splitting for
initial data of moderately bounded energy is bounded independently of∆x for a given
∆t. For problems with smooth potential and smooth initial datathe error is numerically
observed to beO(∆t3) uniformly in∆x after one step of the method, andO(tn∆t2) at
time tn aftern steps, uniformly inn and∆x.

In the following we present an error analysis from Jahnke & Lubich (2000), which
explains this favourable behaviour of the splitting method. Here we assume thatT and
V are self-adjoint operators on a Hilbert spaceH, andT is positive semi-definite. We
require no bound forT , but we assume a (moderate) bound ofV :

‖V ψ‖ ≤ β‖ψ‖ ∀ψ ∈ H . (3.3) III:split-V-bound

We introduce the norms

‖ϕ‖1 = 〈ϕ |T + I |ϕ〉1/2

‖ϕ‖2 = 〈ϕ | (T + I)2 |ϕ〉1/2
(3.4) III:split-norms

which are the usual Sobolev norms in the case ofT = −∆, and can be viewed as discrete
Sobolev norms in the spatially discrete case.

Our main assumptions concern the commutator[T, V ] = TV − V T and the repeated
commutator[T, [T, V ]]. We assume that there are constantsc1 andc2 such that the com-
mutator bounds

‖ [T, V ]ϕ‖ ≤ c1 ‖ϕ‖1 (3.5) III:split-comm1

‖ [T, [T, V ]]ϕ‖ ≤ c2 ‖ϕ‖2 (3.6) III:split-comm2

are satisfied for allϕ in a dense domain ofH. In the spatially continuous case withT =
−∆ and a potentialV (x) that is bounded together with its first- to fourth-order derivatives,
we see from the identities

[∆,V ]ϕ = ∆V ϕ+ 2∇V · ∇ϕ
[∆, [∆,V ]]ϕ = ∆2V ϕ+ 4∇∆V · ∇ϕ+ 4

∑

j,l

∂j∂lV ∂j∂lϕ
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that the commutator bounds (3.5)–(3.6) are indeed valid. For spatial discretization by the
Fourier method, it is shown by Jahnke & Lubich (2000) that these commutator bounds
hold with constantsc1 andc2 that are independent of the discretization parameter. We
then have the following second-order error bound.

Theorem 3.2 (Error Bound for the Strang Splitting). Under the above conditions, theIII:thm:split-error
error of the splitting method (3.2) att = tn is bounded by

‖ψn − ψ(t)‖ ≤ C ∆t2 t max
0≤τ≤t

‖ψ(τ)‖2 , (3.7) III:split-error

whereC depends only on the boundβ of (3.3) and onc1, c2 of (3.5)–(3.6).

It is a noteworthy fact that the time discretization error ofthe splitting method depends
on thespatialregularity of the wave function, not on its temporal regularity. The proof is
done in the usual way by studying the local error of the method(that is, the error after one
step) and the error propagation. For the local error we have the following bounds.

Lemma 3.3 (Local Error). (a) Under conditions (3.3) and (3.5),III:lem:split-local

‖e−i∆t
2
V e−i∆tT e−i

∆t
2
V ϕ− e−i∆t(T+V )ϕ‖ ≤ C1∆t

2 ‖ϕ‖1 , (3.8) le1

whereC1 depends only onc1 andβ.
(b) Under conditions (3.3) and (3.5)–(3.6),

‖e−i∆t
2
V e−i∆tT e−i

∆t
2
V ϕ− e−i∆t(T+V )ϕ‖ ≤ C2∆t

3 ‖ϕ‖2 , (3.9) le2

whereC2 depends only onc1, c2 andβ.

The local error bound (3.9) together with the telescoping formula

ψn − ψ(tn) = Snψ0 − Enψ0 =
n−1∑

j=0

Sn−j−1(S − E)Ejψ0 , (3.10) tele

with S = e−i
∆t
2
V e−i∆tT e−i

∆t
2
V andE = e−i∆t(T+V ), immediately yields the error

bound of Theorem 3.2. It thus remains to prove the lemma. The basic idea of the following
proof is the reduction of the local error to quadrature errors.

Proof. (a) We start from the variation-of-constants formula

e−i∆t(T+V )ϕ = e−i∆tTϕ− i

∫ ∆t

0

e−isTV e−i(∆t−s)(T+V )ϕds .

Expressing the last term under the integral once more by the same formula yields

e−i∆t(T+V )ϕ = e−i∆tTϕ− i

∫ ∆t

0

e−isTV e−i(∆t−s)Tϕds+R1ϕ ,
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where the remainder

R1 = −
∫ ∆t

0

esTV

∫ ∆t−s

0

e−iσTV e−i(∆t−s−σ)(T+V ) dσ ds

is bounded in the operator norm by‖R1‖ ≤ 1

2
∆t2β2. On the other hand, using the

exponential series fore−i
∆t
2
V leads to

e−i
∆t
2
V e−i∆tT e−i

∆t
2
V ϕ = e−i∆tTϕ− i

2
∆t
(
V e−i∆tT + e−i∆tTV

)
ϕ+R2ϕ ,

where‖R2‖ ≤ 1

2
∆t2β2. The basic observation is now that the second term is the trape-

zoidal rule approximation to the integral appearing for theexact solution, with the inte-
grandf(s) = −i e−isTV e−i(∆t−s)Tϕ. Consequently, the error is of the form

e−i
∆t
2
V e−i∆tT e−i

∆t
2
V ϕ− e−i∆t(T+V )ϕ = d+ r , (3.11) e

wherer = R2ϕ−R1ϕ collects the remainder terms and

d =
1

2
∆t
(
f(0) + f(∆t)

)
−
∫ ∆t

0

f(s) ds (3.12) d

= −∆t2
∫ 1

0

(
1

2
− θ) f ′(θ∆t) dθ =

1

2
∆t3

∫ 1

0

θ(1 − θ)f ′′(θ∆t) dθ

is the error of the trapezoidal rule, written in first- and second-order Peano form. Since
f ′(s) = −e−isT [T, V ]e−i(∆t−s)Tϕ, condition (3.5) yields the error bound (3.8).

(b) For the error bound (3.9), we usef ′′(s) = i e−isT [T, [T, V ]]e−i(∆t−s)Tϕ and
condition (3.6) to bound

‖d‖ ≤ 1

12
c2∆t

3 ‖ϕ‖2 . (3.13) d2

It remains to studyr = R2v −R1v. We have

R1 = −
∫ ∆t

0

e−isTV

∫ ∆t−s

0

e−iσTV e−i(∆t−s−σ)T dσ ds+ R̃1

with ‖R̃1‖ ≤ C∆t3β3, and

R2 = −1

8
∆t2

(
V 2e−i∆tT + 2V e−i∆tTV + e−i∆tTV 2

)
+ R̃2

with ‖R̃2‖ ≤ C∆t3β3. We thus obtain

r = d̃+ r̃ , (3.14) r

where r̃ = R̃2ϕ − R̃1ϕ is bounded by‖r̃‖ ≤ C∆t3 β3 ‖ϕ‖ and, with g(s, σ) =
−e−isTV e−iσTV e−i(∆t−s−σ)Tϕ,
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d̃ =
1

8
∆t2

(
g(0, 0) + 2g(0, ∆t) + g(∆t, 0)

)
−
∫ ∆t

0

∫ ∆t−s

0

g(s, σ) dσ ds

is the error of a quadrature formula that integrates constant functions exactly. Hence,

‖d̃‖ ≤ c̃ ∆t3
(

max

∥∥∥∥
∂g

∂s

∥∥∥∥+ max

∥∥∥∥
∂g

∂σ

∥∥∥∥
)
,

where the maxima are taken over the triangle0 ≤ s ≤ ∆t, 0 ≤ σ ≤ ∆t− s. Since

∂g

∂s
(s, σ) = i e−isT [T, V ]e−iσTV e−i(∆t−s−σ)Tϕ+i e−isTV e−iσT [T, V ]e−i(∆t−s−σ)Tϕ ,

we obtain, using (3.5),
∥∥∥∥
∂g

∂s

∥∥∥∥ ≤ c1 (c1 + β) ‖ϕ‖1 + β c1 ‖ϕ‖1 .

Similarly, ‖∂g/∂σ‖ ≤ β c1 ‖ϕ‖1, so that finally

‖d̃‖ ≤ C∆t3 ‖ϕ‖1 .

Together with the above bounds forr̃ andd this yields the error bound (3.9). ⊓⊔

III.3.3 Higher-Order Compositions
III:higher-order

The Strang splittingS(∆t) = e−i
∆t
2
V e−i∆tT e−i

∆t
2
V yields a second-order method.

Higher-order methods can be obtained by a suitable composition of steps of different
size of the basic method:

ψn+1 = S(γs∆t) . . . S(γ1∆t)ψ
n (3.15) III:comp

with symmetrically arranged coefficientsγj = γs+1−j determined such that

S(γs∆t) . . . S(γ1∆t) = e−i∆t(T+V ) + O
(
∆tp+1(‖T ‖ + ‖V ‖)p+1

)

with an orderp > 2. Composition methods of this or similar type have been devised by
Suzuki (1990) and Yoshida (1990), and improved methods havesince been constructed,
e.g., by McLachlan (1995), Kahan & Li (1997), Blanes & Moan (2002), Sofroniou &
Spaletta (2005). We refer to Hairer, Lubich & Wanner (2006),Sect. V.3, and McLachlan
& Quispel (2002) for reviews of composition methods, for their order theory, for their
coefficients, and for further references. For example, an excellent method of orderp = 8
with s = 17 by Kahan & Li (1997) has the coefficients

γ1 = γ17 = 0.13020248308889008087881763
γ2 = γ16 = 0.56116298177510838456196441
γ3 = γ15 = −0.38947496264484728640807860
γ4 = γ14 = 0.15884190655515560089621075
γ5 = γ13 = −0.39590389413323757733623154
γ6 = γ12 = 0.18453964097831570709183254
γ7 = γ11 = 0.25837438768632204729397911
γ8 = γ10 = 0.29501172360931029887096624

γ9 = −0.60550853383003451169892108

(3.16) eq:comp_order8a
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As with the basic Strang splitting method, the presence of powers of‖T ‖ in the error
bound would seem to make a step-size restriction∆t ≪ ∆x2 necessary, but indeed this
is not the case. Thalhammer (2008) proves high-order error bounds for such methods that
require no bound ofT . By a formidable extension of the approach in the proof of Theo-
rem 3.2, usingp-fold repeated commutator bounds and achieving a reductionto quadra-
ture errors, it is shown that in the spatially continuous case withT = −∆ and a smooth
bounded potential, there is apth-order error bound att = tn

‖ψn − ψ(t)‖ ≤ C ∆tp t max
0≤τ≤t

‖ψ(τ)‖p (3.17) III:comp-err

with thepth-order Sobolev norm. It is to be expected that in the spatially discretized case,
the required commutator bounds hold uniformly in∆x so that the error bound becomes
uniform in the spatial discretization parameter.

III.4 Integrators for Time-Dependent Hamiltonians

In contrast to the Chebyshev and Lanczos methods, splittingmethods extend directly to
the Schrödinger equation (0.1) with a time-dependent potentialV (x, t).

Strang Splitting. For a time-dependent potentialV (t) = V (·, t), a version of this method
reads

ψn+1 = e−i
∆t
2
V (tn+1) e−i∆t T e−i

∆t
2
V (tn) ψn . (4.1) III:split-strang-t

The error analysis of Theorem 3.2 is straightforwardly extended to the case of a time-
dependent bounded, smooth potential, where one still obtains a second-order error bound
(3.7), viz.,

‖ψn − ψ(t)‖ ≤ C ∆t2 t max
0≤τ≤t

‖ψ(τ)‖2 .

Higher-Order Compositions. If we denoteS(t,∆t) = e−i
∆t
2
V (t+∆t) e−i∆t T e−i

∆t
2
V (t),

then the composition method

ψn+1 = S(tn + θs∆t, γs∆t) . . . S(tn + θ1∆t, γ1∆t)ψ
n

with θ1 = 0 andθk+1 = θk + γk (for k = 1, . . . , s − 1) has the same formal orderp as
method (3.15) for all the methods proposed in the papers cited above. It is to be expected
that the error analysis by Thalhammer (2008) can be extendedto yield the full-order error
bound (3.17) also in the case of smooth time-dependent potentials.

Magnus Methods.This approach, which has its origin in work by Magnus (1954),uses
an approximation to the solution of

iψ̇(t) = H(t)ψ(t)

by an exponential
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ψn+1 = eΩ
n

ψn , (4.2) III:magnus

where suitable choices forΩn are, for example, the mid-point rule

Ωn = −i∆tH
(
tn +

∆t

2

)
(4.3) III:magnus-mp

or the method based on the two-stage Gaussian quadrature with nodesc1,2 = 1
2 ±

√
3

6 ,

Ωn = − i

2
∆t
(
H1 +H2) −

√
3

12
∆t2

[
H2, H1

]
(4.4) III:magnus-gauss

with Hj = H(tn + cj∆t) for j = 1, 2.
We refer to Iserles & Nørsett (1999) and Iserles, Munthe-Kaas, Nørsett & Zanna

(2000) for the theory of Magnus-type methods forboundedH(t) (more precisely, for
∆t ‖H(t)‖ → 0), and to Blanes, Casas & Ros (2000) for the construction of efficient
high-order Magnus methods. Various interesting commutator-free fourth-order methods
for time-dependent Hamiltonians are given by Blanes & Moan (2000).

For the Schrödinger equation withH(t) = T + V (t) for a (discretized) negative
LaplacianT and a smooth time-dependent potential, it is shown by Hochbruck & Lubich
(2003) that the Magnus methods retain their full order of convergence (without bounds
of T entering the error bound) if the solution is sufficiently regular. The error analysis
again uses commutator bounds similar to (3.5) and (3.6). In particular, the methods (4.3)
and (4.4) are of temporal orders 2 and 4, respectively, uniformly with respect to the space
discretization. The error bounds att = tn are

‖ψn − ψ(t)‖ ≤ C ∆t2 t max
0≤τ≤t

‖ψ(τ)‖1

for method (4.3), and

‖ψn − ψ(t)‖ ≤ C ∆t4 t max
0≤τ≤t

‖ψ(τ)‖k

with k = 7 for method (4.4). In the spatially discretized case this improves tok = 3 if
∆t ‖T 1/2‖ ≤ C, which amounts to a mild step size restriction∆t = O(∆x).

In a practical implementation, the matrix exponential times a vector in (4.2) is approx-
imated by the Chebyshev or Lanczos method, which only requires the action ofΩn on
vectors, or once again by splitting methods.
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Chapter IV.
Numerical Methods for Non-Linear Reduced
Models

In this chapter we turn to numerical methods for non-linear reduced models that result
from a variational approximation as considered in Chapter II. We first study the space
discretization within the variational framework, which amounts to a further reduction of
the approximation manifold in the Dirac–Frenkel time-dependent variational principle
to a finite-dimensional manifold defined in terms of fixed basis functions. For time dis-
cretization, we discuss a splitting approach that applies directly to the formulation via the
Dirac–Frenkel variational principle rather than the equations of motion of the particular
model. We first give an abstract formulation of the variational splitting method and then
apply it to multi-configuration time-dependent Hartree (MCTDH) and Gaussian wave-
packet dynamics.

The general approach in this section is to stay within the variational framework as
far as possible, and to commit variational crimes only at thefinal stages, e.g., in actually
computing integrals for the matrix elements and in special time-stepping methods, where
the effect of the non-variational perturbations can be numerically controlled.

IV.1 Variational Space Discretization

Variational approximation methods such as the time-dependent Hartree method or its mul-
ticonfiguration version leave us with nonlinear partial differential equations, which still
need to be discretized in space. Rather than choosing somead hocdiscretization of the
equations of motion, we here consider using once again the Dirac–Frenkel variational
approximation principle to arrive at the spatially discretized equations.

IV.1.1 Abstract Formulation

We return to the abstract setting of Section II.1 and consider a Schrödinger equation on
a complex Hilbert spaceH with inner product〈·|·〉, with a HamiltonianH that is a self-
adjoint linear operator onH,

dψ

dt
=

1

i~
Hψ . (1.1) IV:schroed-eq

Let M, a submanifold ofH, be the approximation manifold on which an approximate
solutionu(t) to the solutionψ(t) of (1.1) with initial datau(0) = ψ(0) ∈ M is sought.
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The time derivative to the approximate wave functionu(t) ∈ M is determined from the
Dirac–Frenkel variational principle (II.1.2), viz.,

du

dt
∈ TuM such that

〈
v
∣∣∣ du
dt

− 1

i~
Hu
〉

= 0 ∀ v ∈ TuM , (1.2) IV:qvar

whereTuM is the tangent space atu ∈ M, henceforth assumed to be complex linear and
to haveu ∈ TuM.

We now consider a family of finite-dimensional manifoldsMK ⊂ M with a dis-
cretization parameterK, which approximateM asK → ∞ :

For everyu ∈ M, infwK∈MK ‖wK − u‖ → 0 asK → ∞. (1.3) IV:approx-K

We then discretize (1.2) by using the variational approximation onMK : find an approxi-
mate wave functionuK(t) ∈ MK with

duK
dt

∈ TuKMK such that
〈
vK

∣∣∣ duK
dt

− 1

i~
HuK

〉
= 0 ∀ vK ∈ TuKMK .

(1.4) IV:qvar-K

We exemplify this procedure in the Hartree model and then return to study the error
uK(t) − u(t) in the abstract setting.

IV.1.2 Space Discretization of the Hartree and MCTDH Equations

Time-Dependent Hartree Approximation.We recall from Sect. II.3.1 that in the Hartree
method the approximations are chosen as Hartree products ofsingle-particle functions,
which lie in

M =
{
u ∈ L2(RdN) : u 6= 0, u = aϕ1 ⊗ · · · ⊗ ϕN , a ∈ C, ϕn ∈ L2(Rd)

}
. (1.5) IV:hartree-mf

We now approximate each single-paricle functionϕn by a finite linear combination of
basis functionsχ(n)

k ∈ L2(Rd), which in the following we assume orthonormal for ease
of presentation, for example, tensor products of Hermite functions as in Sect. III.1. We
denote

V(n)
K = span

(
χ

(n)
k : k = 1, . . . ,K

)
,

where for simplicity we chooseK independent ofn. We thus have the finite-dimensional
approximation manifold

MK =
{
uK ∈ L2(R3N ) : uK 6= 0, uK = aϕ

(1)
K ⊗· · ·⊗ϕ(N)

K , a ∈ C, ϕ
(n)
K ∈ V(n)

K

}
.

(1.6) IV:hartree-mf-K

Retracing the derivation of the Hartree equations of motiondown to (II.3.9), we now
arrive at

〈
ϑ

(n)
K

∣∣∣ ∂ϕ
(n)
K

∂t

〉
=
〈
aϕ

(1)
K ⊗ · · · ⊗ ϑ

(n)
K ⊗ · · · ⊗ ϕ

(N)
K

∣∣∣ 1

i~
HuK

〉
(1.7) IV:hartree-weak-eom

−
〈
uK

∣∣∣ 1

i~
HuK

〉
〈ϑ(n)
K |ϕ(n)

K 〉 ∀ϑ(n)
K ∈ V(n)

K ,
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where simply the spaceL2 has been replaced by the finite-dimensional approximation
spaceV(n)

K . Writing

ϕ
(n)
K (xn, t) =

K∑

k=1

c
(n)
k (t)χ

(n)
k (xn) ,

this yields the following system of ordinary differential equations for the coefficients (as
in (II.3.12), we ignore a phase term):

i~
dc

(n)
k

dt
=

K∑

l=1

〈χ(n)
k |H(n) |χ(n)

l 〉(n) c
(n)
l (1.8) IV:hartree-c

with the mean-field Hamiltonian

H(n) = 〈ψ(n)
K |H |ψ(n)

K 〉(¬n) with ψ
(n)
K =

⊗

j 6=n
ϕ

(j)
K ,

where theL2 inner product on the right-hand side is over all variables exceptxn. We note
that equations (1.8) are just a Galerkin discretization of the Hartree equations (II.3.12).

MCTDH Approximation. Conceptually the same is done for the MCTDH method. Drop-
ping the discretization parameterK in the notation, we approximate by a linear combina-
tion of Hartree products,

u(x1, . . . , xN , t) ≈
∑

J

aJ(t)ϕ
(1)
j1

(x1, t) · . . . · ϕ(N)
jN

(xN , t)

with the sum over multi-indicesJ = (j1, . . . , jN ), where now each single-particle func-

tionϕ(n)
jn

is a finite linear combination of basis functions:

ϕ
(n)
j (xn, t) =

K∑

α=1

c
(n)
j,α(t)χ(n)

α (xn) .

By the arguments of Sect. II.3.3, we find that the coefficientssatisfy differential equations
which, in the notation of Theorem II.3.4, read

i~
daJ
dt

=
∑

I

〈ΦJ |H |ΦI〉 aI , J = (j1, . . . , jN ) ,

i~
dc

(n)
j,α

∂t
=

rn∑

k=1

rn∑

l=1

K∑

β=1

(ρ(n))−1
j,k〈χ(n)

α |H(n)
kl |χ(n)

β 〉(n) c
(n)
l,β

−
rn∑

k=1

rn∑

l=1

rn∑

m=1

K∑

β=1

K∑

γ=1

(ρ(n))−1
j,k c

(n)
m,α c

(n)
m,γ 〈χ(n)

γ |H(n)
kl |χ(n)

β 〉(n) c
(n)
l,β

j = 1, . . . , rn, n = 1, . . . , N , α = 1, . . . ,K ,

where we have the mean-field operatorsH
(n)
kl = 〈ψ(n)

k |H |ψ(n)
l 〉(¬n) with the single-

hole functionsψ(n)
j of (II.3.33).
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IV.1.3 Discretization Error

We study the error‖uK(t) − u(t)‖ under the assumptions of Sect. II.6 for the manifolds
MK , with constants that are uniform inK. These assumptions can be verified, e.g., for
variational Hermite or Fourier discretizations of the Hartree and MCTDH models. We let
again~ = 1 in this subsection. The HamiltonianH is split as

H = A+B (1.9) IV:HAB

with self-adjoint linear operatorsA andB whereB is bounded,

‖Bϕ‖ ≤ β ‖ϕ‖ for all ϕ ∈ H , (1.10) IV:B

andA is tangential onMK :

AuK ∈ TuKMK for all uK ∈ MK . (1.11) IV:A

The orthogonal projectorsPK(uK) ontoTuKMK andP⊥
K (uK) = I − PK(uK) satisfy

‖ (PK(uK) − PK(vK))ϕ ‖ ≤ κ ‖uK − vK‖ · ‖ϕ‖ (1.12) IV:kappa-1

‖P⊥
K (vK)(uK − vK) ‖ ≤ κ ‖uK − vK‖2 (1.13) IV:kappa-2

for all uK , vK ∈ MK andϕ ∈ H. We further assume

dist(u(t),MK) ≤ 1

2κ
for 0 ≤ t ≤ t , (1.14) IV:psinear

which is satisfied for sufficiently largeK under the approximation condition (1.3). We
require the bounds

‖Hu(t)‖ ≤ µ , ‖HuK(t)‖ ≤ µ and ‖AuK(t)‖ ≤ µ . (1.15) IV:mu

Further we consider the distance boundδ ≤ µ given by

dist (Hu(t), TvK(t)M) ≤ δ , dist (HuK(t), TuK(t)M) ≤ δ , (1.16) IV:delta

wherevK(t) ∈ MK is the best approximation tou(t) onMK :

dK(t) = dist (u(t),MK) = ‖vK(t) − u(t)‖ .

We then have the following extension of Theorem II.6.1, where we note in addition
‖uK(t) − u(t)‖ ≤ ‖uK(t) − vK(t)‖ + dK(t).

Theorem 1.1 (Quasi-Optimality). Under conditions (1.9)–(1.16), the difference be-IV:thm:near-opt
tween the variational discretizationuK(t) of (1.4) and the best approximationvK(t) on
MK is bounded by

‖uK(t) − vK(t)‖ ≤ eγt‖uK(0) − vK(0)‖ + Ceγt
∫ t

0

dK(s) ds (1.17) IV:err-opt

with γ = 2κδ andC = β + 4κµ , for 0 ≤ t ≤ t .
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Proof. The proof is almost identical to that of Theorem II.6.1, where nowuK andu
assume the roles ofu andψ, respectively. We compare the differential equation foruK ,

u̇K = PK(uK)
1

i
HuK ,

with that for the best approximationvK , which in correspondence with (II.6.14) reads

v̇K = PK(vK)u̇ + r(vK , u) with ‖r(vK , u)‖ ≤ 2κµdK .

Sinceu̇ = P (u)1
i Hu, andPK(vK)P (vK) = PK(vK) because ofMK ⊂ M, we obtain

v̇K = PK(vK)
1

i
HvK − PK(vK)

1

i
H(vK − u) + PK(vK)(P (u) − P (vK))

1

i
Hu ,

where the last term is bounded byκµdK . The proof then proceeds in the same way as that
of Theorem II.6.1. ⊓⊔

For the Hartree or MCTDH model on a bounded interval in each coordinate direction
and with periodic boundary conditions, Theorem 1.1 can be used to show that the vari-
ational Fourier discretization withK Fourier modes in each coordinate satisfies an error
bound

‖uK(t) − u(t)‖ ≤ C(t)K−s max
0≤τ≤t

‖u(τ)‖Hs

if the Hartree or MCTDH wave functionu is in the periodic Sobolev space of orders. It
is to be expected that this estimate can be extended to the Fourier collocation method via
the interpretation of collocation as a Galerkin method withquadrature approximation of
the matrix elements.

IV.2 Variational Splitting: Abstract Formulation

Splitting methods were found to be useful as time integration methods for the linear
Schrödinger equation (Sect. III.3). Here, they are extended to variational approximations.

IV.2.1 Splitting the Variational Equation

Suppose that

H = T + V (2.1) IV:HTV

and that the variational equations (1.2) withT andV instead ofH are easier to solve than
that for the full HamiltonianH . Then, the following splitting approach appears promising.
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Algorithm 2.1 (Variational Splitting). A time step fromun ∈ M to the new approxi-IV:alg:vsplit
mationun+1 ∈ M at timetn+1 = tn +∆t is done as follows.

1. Half-step withV : Determineun+ ∈ M as the solution at time∆t/2 of the equation
for u,

du

dt
∈ TuM such that

〈
v
∣∣∣ du
dt

− 1

i~
V u
〉

= 0 ∀ v ∈ TuM , (2.2) IV:vsplit-V

with initial valueu(0) = un ∈ M.
2. Full step withT : Determineun+1

− as the solution at time∆t of

du

dt
∈ TuM such that

〈
v
∣∣∣ du
dt

− 1

i~
Tu
〉

= 0 ∀ v ∈ TuM , (2.3) IV:vsplit-T

with initial valueu(0) = un+.
3. Half-step withV : Finally,un+1 is the solution at time∆t/2 of (2.2) with initial value
u(0) = un+1

− .

This method was put forward in Lubich (2004) as a numerical integrator for the
MCTDH approximation. We note that forM = H this is just the Strang splitting (III.3.2).
When we compose steps of different length by this method as inSection III.3.3, we again
obtain higher-order methods (at least formally).

Norm Preservation, Symplecticity, Time Reversibility. The above method is a sym-
metric composition of exact flows that preserve norm and symplecticity according to
Section II.1. Disregarding additional numerical errors that may result from an inexact
solution of the differential equations (2.2) and (2.3), themapun 7→ un+1 is therefore
norm-preserving, symplectic, and time-reversible.

IV.2.2 Error Analysis

We give a non-linear extension of the error analysis of Theorem III.3.2 to derive a second-
order error bound. In this subsection we let~ = 1 for convenience.

Assumptions.Our assumptions are similar to those of Sect. II.6. We consider the situation
that the approximation manifoldM is such that solutions of the free Schrödinger equation
starting onM remain onM:

e−itTu ∈ M for u ∈ M, t ∈ R .

This is satisfied for all the reduced models of Chapter II. An equivalent condition is

Tu ∈ TuM for u ∈ M∩D(T ) . (2.4) IV:T-cond

We assume a bound onV :

‖V ϕ‖ ≤ β ‖ϕ‖ ∀ϕ ∈ H . (2.5) IV:bound-V
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We assume that the manifold has bounded curvature: the orthogonal projectionsP (u) :
H → TuM andP⊥(u) = I − P (u) satisfy (II.6.5)–(II.6.6), viz.,

‖ (P (u) − P (v))ϕ ‖ ≤ κ ‖u− v‖ · ‖ϕ‖ (2.6) IV:kappa1

‖P⊥(v)(u − v) ‖ ≤ κ ‖u− v‖2 (2.7) IV:kappa2

for all u, v ∈ M andϕ ∈ H. In addition we need non-linear versions of the commutator
bounds (III.3.5)–(III.3.6). For their formulation we needto introduce some more notation.

Vector Fields and Flows onMMM. The exact solution of (1.2) is

u(t) = φtH(u0)

whereφtH is theflowmap of the differential equation onM,

u̇ = Ĥ(u) with Ĥ(u) = P (u)
1

i
Hu .

that is,φtH(v) ∈ M is the solution at timet of this differential equation with initial value
u(0) = v ∈ M. A step of the splitting algorithm reads, in similar notation,

un+1 = φ
∆t/2
V ◦ φ∆tT ◦ φ∆t/2V (un) , (2.8) IV:strang

whereφtV is the flow onM of

u̇ = V̂ (u) with V̂ (u) = P (u)
1

i
V u,

andφtT = e−itT is the flow onM of

u̇ = T̂ (u) with T̂ (u) = P (u)
1

i
Tu =

1

i
Tu .

The last equality holds by condition (2.4).

Lie-Commutator Bounds. We require bounds on the Lie commutator of the vector fields
T̂ andV̂ onM, given by

[T̂ , V̂ ](u) =
1

i
T V̂ (u) − V̂ ′(u)

1

i
Tu

with the directional derivative

V̂ ′(u)
1

i
Tu =

d

dt

∣∣∣
t=0

V̂ (etT/iu).

A further estimate is needed for the iterated commutator[T̂ , [T̂ , V̂ ]]. We assume non-
linear versions of the bounds (III.3.5)–(III.3.6):

‖[T̂ , V̂ ](u)‖ ≤ c1‖u‖1 (2.9) IV:comm1

‖[T̂ , [T̂ , V̂ ]](u)‖ ≤ c2‖u‖2 (2.10) IV:comm2

with constantsc1, c2 independent ofu ∈ M∩D(T ). Here, the Sobolev-type norms with
subscripts1 and2 are again those defined by (III.3.4). These conditions indeed turn out
to be satisfied for the Hartree method and its multi-configuration versions in the case of a
smooth bounded potential; see Lubich (2004).
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Error Bound for the Variational Splitting. Following Lubich (2004), we obtain a
second-order error bound of the type of Theorem III.3.2.

Theorem 2.2 (Error Bound). Under conditions (2.4)–(2.10), the error of the variationalIV:thm:split-error
splitting method is bounded att = tn by

‖un − u(t)‖ ≤ C(t)∆t2 max
0≤τ≤t

‖u(τ)‖2 ,

whereC(t) depends only onβ, c1, c2, κ, andt.

The proof is done in the usual pattern by combining estimatesof the local error and a
stability estimate.

Lemma 2.3 (Local Error). In the situation of Theorem 2.2, the error after one step isIV:lem:loc-err
bounded by

‖u1 − u(∆t)‖ ≤ C1∆t
2 max

0≤τ≤∆t
‖u(τ)‖1 (2.11) loc-err1

‖u1 − u(∆t)‖ ≤ C2∆t
3 max

0≤τ≤∆t
‖u(τ)‖2 , (2.12) loc-err2

whereC1 andC2 depend only onβ, c1, c2.

Lemma 2.4 (Stability).Letu1 andv1 be the numerical solutions after one step startingIV:lem:stab
from u0 ∈ M andv0 ∈ M, resp., withu0 andv0 of unit norm and‖u0 − v0‖ ≤ c∆t.
Then, their difference is bounded by

‖u1 − v1‖ ≤ eγ∆t ‖u0 − v0‖ (2.13) stab

with γ = κδ + O(∆t), whereδ = dist(V v0, Tv0M).

If we denote a step of the variational splitting method byun+1 = S∆t(u
n), then

the error accumulation formula (Lady Windermere’s Fan; seeHairer, Nørsett & Wanner
(1993), Sect. II.3)

un − u(tn) =

n−1∑

j=0

(
Sn−1−j
∆t

(
S∆t(u(t

j)
)
− Sn−1−j

∆t

(
(u(tj+1)

))

together with Lemmas 2.3 and 2.4 yield Theorem 2.2 withC(t) = (eγt − 1)/γ. We
remark that the exponentγ is essentially the same as the exponent in Theorem II.6.1.

It remains to prove the two lemmas.
The local error bound of Lemma 2.3 is proved by transfering the arguments of the

proof of Lemma III.3.3 to the present non-linear setting viathe calculus of Lie derivatives,
which we describe next.

Calculus of Lie Derivatives.(Cf., e.g., Hairer, Lubich & Wanner (2006), Sect. III.5, or
Hundsdorfer & Verwer (2003), Sect. IV.1.4. This formalism only relies on the differen-
tiability and the semi-group property of the flow, and so it isapplicable in the infinite-
dimensional setting as well as in the finite-dimensional case.)
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For a vector fieldF on M, which tou ∈ M associatesF (u) ∈ TuM, such asT̂
or V̂ or Ĥ = T̂ + V̂ , we denote byφtF the flow at timet of the differential equation
u̇ = F (u) onM, that is,φtF (v) is the solution at timet with initial valueu(0) = v. The
Lie derivativeDFG atv ∈ M of another vector fieldG onM is defined by

(
DFG

)
(v) =

d

dt

∣∣∣
t=0

G(φtF (v)) = G′(v)F (v).

We use the notation (
exp(tDF )G

)
(v) = G(φtF (v)).

In particular, for the identityId, the flow is reproduced asexp(tDF )Id(v) = φtF (v). We
then have the following properties:

d

dt
exp(tDF )G(v) =

(
exp(tDF )DFG

)
(v) =

(
DF exp(tDF )G

)
(v).

The first equality follows directly from the definition. The second equality uses that
F (φtF (v)) = (φtF )′(v)F (v), which is obtained by observing that the differenceδ(t) =

F (φtF (v))−(φtF )′(v)F (v) satisfies the linear differential equationδ̇(t) = F ′(φtF (v))δ(t)
with δ(0) = 0.

The commutator[DF , DG] = DFDG −DGDF of the Lie derivatives of two vector
fieldsF andG is the Lie derivative of the Lie commutator[G,F ] = G′F − F ′G of the
vector fields in reversed order,

[DF , DG] = D[G,F ].

This is seen by a direct calculation in which second derivatives cancel.

Proof of Lemma 2.3.For notational simplicity we writeDH , DT , DV instead ofD bH ,
DbT ,DbV , respectively. We start from the nonlinear variation-of-constants formula

u(∆t) = exp(∆tDH)Id(u0) = exp(∆tDT )Id(u0) +
∫ ∆t

0

exp((∆t− s)DH)DV exp(sDT )Id(u0) ds.

Using this formula once more for the expression under the integral, we obtain

u(∆t) = exp(∆tDT )Id(u0) +
∫ ∆t

0

exp((∆t− s)DT )DV exp(sDT )Id(u0) ds+ r1

with the remainder

r1 =

∫ ∆t

0

∫ ∆t−s

0

exp((∆t− s− σ)DH)DV exp(σDT )DV exp(sDT )Id(u0) dσ ds ,
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which is bounded byC∆t2 with a constantC depending only on the boundβ of the
potentialV . On the other hand, the numerical solution reads in this notation

u1 = exp(
1

2
∆tDV ) exp(∆tDT ) exp(

1

2
∆tDV )Id(u0) .

Taylor expansionexp(∆t2 DV ) = I + ∆t
2 DV +

(
∆t
2

)2 ∫ 1

0
(1 − θ) exp(θ∆t2 DV )D2

V dθ
gives

u1 = exp(∆tDT )Id(u0) +
∆t

2

(
exp(∆tDT )DV +DV exp(∆tDT )

)
Id(u0) + r2

with the remainderr2 bounded byC∆t2, again with a constantC depending only onβ.
The error now becomes

u1 − u(∆t) =
∆t

2

(
exp(∆tDT )DV +DV exp(∆tDT )

)
Id(u0)

−
∫ ∆t

0

exp((∆t− s)DT )DV exp(sDT )Id(u0) ds+ (r2 − r1),

and hence the principal error term is just the quadrature error of the trapezoidal rule ap-
plied to the integral over[0, ∆t] of the function

f(s) = exp((∆t− s)DT )DV exp(sDT )Id(u0).

We express the quadrature error in first- and second-order Peano form,

1

2
∆t
(
f(0) + f(∆t)

)
−
∫ ∆t

0

f(s) ds

= −∆t2
∫ 1

0

(
1

2
− θ) f ′(θ∆t) dθ =

1

2
∆t3

∫ 1

0

θ(1 − θ)f ′′(θ∆t) dθ .

Since

f ′(s) = exp((∆t − s)DT ) [DT , DV ] exp(sDT )Id(u0)

= − exp((∆t− s)DT )D[ bT,bV ] exp(sDT )Id(u0)

= −e−isT [T̂ , V̂ ] e−i(∆t−s)Tu0 ,

the commutator bound (2.9) shows that the quadrature error is bounded by14c1∆t
2‖u0‖1.

This proves the first error bound of Lemma 2.3. To obtain the second bound we use simi-
larly

f ′′(s) = exp((∆t− s)DT ) [DT , [DT , DV ]] exp(sDT )Id(u0)

= e−isT [T̂ , [T̂ , V̂ ]] e−i(∆t−s)Tu0 ,
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and hence (2.10) shows that the quadrature error is bounded by 1
12c2∆t

3 ‖u0‖2. A closer
look at the remainder termr = r2 − r1 yields, as in the proof of Lemma III.3.3, that
r is itself a quadrature error of a first-order two-dimensional quadrature formula for the
integral over the triangle0 ≤ s ≤ ∆t, 0 ≤ σ ≤ ∆t− s of the function

g(s, σ) = exp((∆t− s− σ)DT )DV exp(σDT )DV exp(sDT )Id(u0) ,

plus anO(∆t3) remainder term. The quadrature error inr is bounded byC∆t3 times the
norms of the partial derivatives with respect tos andσ of g, which turn out to be bounded
as needed. ⊓⊔
Proof of Lemma 2.4. The stability estimate is obtained from (2.8) by observing that
e−i∆tT is unitary and by showing that

‖φtV (u0) − φtV (v0)‖ ≤ eγt ‖u0 − v0‖

with γ as stated in the lemma. This bound is shown as follows: We writeu(t) = φtV (u0)
andv(t) = φtV (v0). Notingu = P (u)u andv = P (v)v, we have

u̇− v̇ = −iP (u)V P (u)(u − v) − i
(
P (u)V P (u) − P (v)V P (v)

)
v .

Forming the inner product withu− v and taking the real part, we obtain

‖u− v‖ · d
dt
‖u− v‖ = Re〈u − v | u̇− v̇〉

= Re
〈
u− v | − i

(
P (u)V P (u) − P (v)V P (v)

)
v
〉

= Im
〈
u− v |P (u)V

(
P (u) − P (v)

)
v
〉

+ Im
〈
u− v |

(
P (u) − P (v)

)
P (v)V v

〉

+ Im
〈
u− v |

(
P (u) − P (v)

)
P⊥(v)V v

〉

≡ I + II + III .

Since
(
P (u) − P (v)

)
v = −

(
P⊥(u) − P⊥(v)

)
v = −P⊥(u)v = P⊥(u)(u − v) ,

the bound (2.7) gives us
|I| ≤ βκ ‖u− v‖3 .

For II we note
〈
u− v |

(
P (u) − P (v)

)
P (v)V v

〉
= −

〈
u− v |

(
P⊥(u) − P⊥(v)

)
P (v)V v

〉

= −
〈
u− v |P⊥(u)P (v)V v

〉
= −

〈
P⊥(u)(u − v) |P⊥(u)P (v)V v

〉

=
〈
P⊥(u)(u− v) |

(
P (u) − P (v)

)
P (v)V v

〉
,

and hence (2.6)–(2.7) yield
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|II| ≤ βκ2 ‖u− v‖3 .

Finally, since
‖P⊥(v)V v‖ = dist(V v, TvM) = δ + O(∆t) ,

we have from (2.6)
|III| ≤ κ

(
δ + O(∆t)

)
‖u− v‖2 .

Hence, as long as‖u− v‖ = O(∆t), we obtain

d

dt
‖u− v‖ ≤

(
κδ + O(∆t)

)
‖u− v‖ ,

which yields the stated result. ⊓⊔

IV.3 Variational Splitting for MCTDH

We consider the Schrödinger equation for the nuclei obtained from the Born–Oppenheiner
approximation,

i~
∂ψ

∂t
= Hψ , H = T + V (3.1) IV:schrod-nuc-V

with the kinetic energy operatorT = −∑N
n=1

~
2

2MN
∆xn and a potentialV (x1, . . . , xN ),

which we assume bounded and smooth for all theoretical statements made in this section.
We recall the MCTDH method of Sect. II.3.3, which gives the variational approxima-

tion on the manifoldM of (3.40). The approximation is by linear combinations of tensor
products of single-particle functions satisfying the orthogonality relations (II.3.31),

u =
∑

J

aJ ϕ
(1)
j1

⊗ · · · ⊗ ϕ
(N)
jN

, (3.2) IV:mctdh-u

where the sum is over multi-indicesJ = (j1, . . . , jN ) for jn = 1, . . . , rn andn =
1, . . . , N .

The variational splitting method for the MCTDH model turns out to yield an explicit
time integration method that is unconditonally stable withrespect to the space discretiza-
tion parameter∆x. As an interesting alternative to the variational splitting method for
integrating the MCTDH equations, we refer to the constant-mean-field multiple time-
stepping method by Beck & Meyer (1997) where, however, the micro-steps are required
of sizeO(∆x2) for stability.

Step with the Kinetic Energy. SinceTu ∈ TuM for u ∈ M∩D(T ), the step (2.3) with
T actually solves the free Schrödinger equation

i~
∂u

∂t
= Tu .

For an initial function in the multi-configuration form (3.2), this completely decouples
into single-particle free Schrödinger equations:daJ/dt = 0 for all J and
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i~
∂ϕ

(n)
jn

∂t
= − ~2

2Mn
∆xnϕ

(n)
jn

(3.3) IV:single-free

for jn = 1, . . . , rn andn = 1, . . . , N . These equations are solved efficiently, e.g., by FFT
diagonalization of the Laplacian in the Fourier method of Section III.1.3. We note that the
solutions of (3.3) preserve the orthogonality (3.31) of thesingle-particle functions.

Step with the Potential.Solving (2.2) means solving the MCTDH equations (II.3.41)–
(II.3.42) with only the potentialV instead of the full HamiltonianH :

i~
daJ
dt

=
∑

K

〈ΦJ |V |ΦK〉 aK , ∀ J = (j1, . . . , jN ) , (3.4) IV:work1

i~
∂ϕ

(n)
jn

∂t
= (I − P (n))

rn∑

kn=1

rn∑

ln=1

(ρ(n))−1
jn,kn

〈ψ(n)
kn

|V |ψ(n)
ln

〉(¬n) ϕ
(n)
ln
, (3.5) IV:work2

jn = 1, . . . , rn, n = 1, . . . , N ,

where we refer back to Theorem II.3.4 for the notation. The favourable situation compared
with the full MCTDH equations is that no differential operator appears in the equations.
Therefore, with an explicit integrator the step size∆t can be chosen independent of the
spatial grid size∆x. For the further discussion we collect all coefficients ina = (aJ )

and all single-particle functions inϕ =
(
ϕ

(n)
jn

)
and abbreviate the differential equations

(3.4)–(3.5) as
i~ ȧ = AV (ϕ) a

i~ ϕ̇ = (I − P (ϕ))BV (a, ϕ)ϕ .
(3.6) IV:mctdh-eqs-V

HereAV (ϕ) is the Galerkin matrix with entries〈ΦJ |V |ΦK〉, which are high-dimensional
integrals that need to be computed approximately; see Beck,Jäckle, Worth & Meyer
(2000) for various techniques employed in their MCTDH code.A highly successful ap-
proach is to approximate the potential by linear combinations of tensor products as in
(II.3.13), for which the integrals reduce to products of low-dimensional integrals. In the
second equation,P = blockdiag(P (k)) is the orthogonal projection andBV contains the
density matricesρ(n) and the mean-field operators, which are formed by the inner prod-
ucts〈ψ(n)

kn
|V |ψ(n)

ln
〉(¬n) with the single-hole functions. The computation of the matrix

elements is the computationally most expensive part of the method.

Time Integration Scheme.For the numerical solution of the differential equations (3.6)
we consider a multiple time-stepping approach for the reduced MCTDH equations (3.6), a
variant of theconstant mean-fieldapproximation of Beck & Meyer (1997) proposed there
for the full MCTDH equations. This approach is motivated by the observation that the
single-particle functionsϕ often change faster than the Galerkin matrix and the mean-field
operators, whose computation is the most expensive part of the integration. We consider
the following algorithm for integrating the reduced MCTDH equations (3.6).
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Algorithm 3.1 (Constant Mean-Field Method for the Potential Part in MCTDH).
A time step of length∆t for the differential equations (3.6) proceeds as follows.IV:alg:cmf

1. ComputeB0
V = BV (a0, ϕ0) (that is, the density and mean-field matrices at(a0, ϕ0))

and solve
i~ ϕ̇ = (I − P (ϕ))B0

V ϕ (3.7) mts-phi0

with initial valueϕ(0) = ϕ0 over half a time step[0, 1
2∆t] and setϕ1/2 = ϕ(1

2∆t).

2. Compute the Galerkin matrixA1/2
V = AV (ϕ1/2) and

a1 = e−i∆tA
1/2

V /~ a0 .

3. Determine the predictor̃ϕ1 as the solution of (3.7) at∆t and computeB1
V =

BV (a1, ϕ̃1). Solve
i~ ϕ̇ = (I − P (ϕ))B1

V ϕ (3.8) mts-phi1

with initial valueϕ(1
2∆t) = ϕ1/2 over[ 12∆t,∆t] and setϕ1 = ϕ(∆t).

The differential equations forϕ in the first and third step are solved approximately by
ν smaller time steps of length∆τ = ∆t/ν. An orthogonality-preserving integrator is
favourably used here; see Hairer, Lubich & Wanner (2006), Sect. IV.9.1, for various pos-
sibilities. The action of the matrix exponential in the second step is computed efficiently
with the Lanczos method of Sect. III.2.2. There is no step size restriction byO(∆x2) since
the Laplacian of the kinetic energy part has been taken out bythe variational splitting.

IV.4 Variational Splitting for Gaussian Wave Packets

We consider the Schrödinger equation (II.4.1) in semi-classical scaling, viz.,

iε
∂ψ

∂t
= Hψ , H = Hε = −ε2

2
∆+ V , (4.1) IV:schrod-eps

with a small positive parameterε. We recall from Sect. II.4 that the variational approxi-
mation of the wave function by a complex Gaussian (II.4.2), viz.,

ψ(x, t) ≈ u(x, t) = exp

(
i

ε

(
(x−q(t))TC(t)(x−q(t))+p(t)·(x−q(t))+ζ(t)

))
, (4.2) IV:gwp

has equations of motion for the parameters that read, with averages〈W 〉(t) = 〈u(t) |W |u(t)〉,

q̇ = p

ṗ = −〈∇V 〉 (4.3) IV:gwp-qp

for position and momentum and
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Ċ = − 2C2 − 1

2
〈∇2V 〉 (4.4) IV:gwp-C

ζ̇ =
1

2
|p|2 − 〈V 〉 + iε trC +

ε

8

〈
tr
(
(ImC)−1∇2V

)〉
(4.5) IV:gwp-phase

for the width matrix and phase.

Variational Splitting in Coordinates. The variational splitting method of Algorithm 2.1
applied to Gaussian wave-packet dynamics yields a corresponding splitting in the differ-
ential equations for the parameters:

1. and 3.Half-step withV :
{

q̇ = 0

ṗ = −〈∇V 〉

{
Ċ = − 1

2 〈∇2V 〉
ζ̇ = −〈V 〉 + ε

8

〈
tr
(
(ImC)−1∇2V

)〉 (4.6) IV:gauss-split-ode-V

2. Full step withT :{
q̇ = p

ṗ = 0

{
Ċ = − 2C2

ζ̇ = 1
2 |p|2 + iε trC

(4.7) IV:gauss-split-ode-T

Remarkably, these differential equations can all be solvedexplicitly. We note thatq, ImC,
and Imζ remain constant in time in (4.6), and hence also the averagesof V , ∇V , and
∇2V over the Gaussian. Denoting byu0 the Gaussian with parametersq0, p0, C0, ζ0 and
〈∇W 〉0 = 〈u0 |W |u0〉 for W = V,∇V,∇2V , the solution of (4.6) is thus given by

{
q(t) = q0

p(t) = p0 − t 〈∇V 〉0

{
C(t) = C0 − t

2 〈∇2V 〉0

ζ(t) = ζ0 − t 〈V 〉0 + tε
8

〈
tr
(
(ImC0)−1∇2V

)〉0
.

The solution to the differential equations (4.7) is obtained as
{

q(t) = q0 + tp0

p(t) = p0

{
C(t) = C0 (I + 2tC0)−1

ζ(t) = ζ0 + t
2 |p0|2 + i

2 ε tr
(
log(I + 2tC0)

)
.

This yields the following numerical method from Faou & Lubich (2006).

Algorithm 4.1 (Gaussian Wave-Packet Integrator).Starting from the GaussianunIV:alg:gwp
with parametersqn, pn,Cn, ζn, a time step for (4.3)–(4.5) from timetn to tn+1 = tn+∆t
proceeds as follows:

1. With the averages〈W 〉n = 〈un |W |un〉 for W = V,∇V,∇2V , compute

pn+1/2 = pn − ∆t

2
〈∇V 〉n

Cn+ = Cn − ∆t

4
〈∇2V 〉n (4.8) IV:gwp-alg-1

ζn+ = ζn − ∆t

2
〈V 〉n +

∆t ε

16

〈
tr
(
(ImCn)−1∇2V

)〉n
.
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2. Compute

qn+1 = qn −∆t pn+1/2

Cn+1
− = Cn+(I + 2∆tCn+)−1 (4.9) IV:gwp-alg-2

ζn+1
− = ζn+ +

∆t

2

∣∣pn+1/2
∣∣2 +

i

2
ε tr
(
log(I + 2∆tCn+)

)
.

3. With the averages over the Gaussian at timetn+1, which are the same as those for
the previously computed parametersqn+1, Cn+1

− , ζn+1
− , compute

pn+1 = pn+1/2 − ∆t

2
〈∇V 〉n+1

Cn+1 = Cn+1
− − ∆t

4
〈∇2V 〉n+1 (4.10) IV:gwp-alg-3

ζn+1 = ζn+1
− − ∆t

2
〈V 〉n+1 +

∆t ε

16

〈
tr
(
(ImCn+1)−1∇2V

)〉n+1
.

We collect some properties of this algorithm.

Theorem 4.2 (Properties of the Gaussian Wave-Packet Integrator). Algorithm 4.1 isIV:thm:gwp-int
an explicit, second-order numerical method for Gaussian wave-packet dynamics. The
method is symplectic and time-reversible and preserves theunit L2 norm of the wave
packetsun. In the limit ε → 0, the position and momentum approximationsqn, pn of
this method tend to those obtained by applying the Störmer–Verlet method (I.3.5) to the
associated classical mechanical system (I.1.1).

Proof. The statement forε → 0 follows directly from the equations forpn+1/2, qn+1,
pn+1 and from noting〈∇V 〉n → ∇V (qn). The other properties have already been veri-
fied for variational splitting methods (Algorithm 2.1) in general. ⊓⊔

The method does not preserve the total energy exactly, but itis shown by Faou &
Lubich (2006) that the energy〈un |H |un〉 along the numerical solution deviates from
the initial energy only byO(∆t2) over exponentially long timest ≤ ec/∆t, uniformly
in ε. The proof uses the symplecticity of the method, in the form of the preservation of
the Poisson structure (see Sect. II.4.2) by the one-step mapfor the parameters.

In view of the small parameterε, the discussion of the order of the method re-
quires some care. Here it is useful to consider the integrator in the scaled variables
ŷ = (p, q,ReC, ImC/ε,Reζ, Im ζ/ε). Since the equations of motion in the scaled vari-
ables turn out to containε only as a regular perturbation parameter, aftern steps of the
splitting integrator we have theε-uniform error bound

ŷn − ŷ(tn) = O(∆t2),

where the constants symbolized by theO-notation are independent ofε and ofn and∆t
with n∆t ≤ Const. For the absolute values of the Gaussian wave packets this yields the
error bound
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∥∥|un|2 − |u(tn)|2
∥∥ = O(∆t2), (4.11) u-abs-err

but the approximation of the phases is only

‖un − u(tn)‖ = O(∆t2/ε). (4.12) u-err

We refer to Faou & Lubich (2006) for more details, for the formulation of the algorithm
for spherical wave packets (diagonal complex width matrixC), and for numerical exper-
iments that illustrate the stated properties.



122 IV. Numerical Methods for Non-Linear Reduced Models



Chapter V.
Semi-Classical Dynamics Using Hagedorn Wave
Packets

chap:hagwp

V.1 Hagedorn’s Parametrization of Gaussian Wave
Packets

In Sect. II.4 we considered Gaussian wave packets written as

u(x, t) = exp

(
i

ε

(
1

2
(x − q(t))TC(t)(x − q(t)) + p(t) · (x − q(t)) + ζ(t)

))
,

with a d-dimensional complex symmetric matrixC(t) with positive definite imaginary
part. It was noticed by Hagedorn (1980) and further developed in subsequent papers,
notably in Hagedorn (1998), that much insight and importantextensions can be obtained
from factorizingC(t) into two complex matrices with special properties.

A Matrix Factorization. A key to the further development is the following matrix lemma,
see Hagedorn (1998), Sect. 3. Here, the superscriptT denotes the transpose of a matrix
and the superscript∗ denotes the transpose and complex conjugate.I is thed-dimensional
identity matrix. (The matricesQ andP in the lemma correspond toA andiB in Hage-
dorn’s papers.)

V:lem:hag-rel Lemma 1.1. LetQ andP be complexd× d matrices that satisfy the relations

QTP − PTQ = 0

Q∗P − P ∗Q = 2iI .
(1.1) V:hag-rel

Then,Q andP are invertible, and

C = PQ−1

is complex symmetric with the positive definite imaginary part

ImC = (QQ∗)−1. (1.2) V:QQ

Conversely, every complex symmetric matrixC with positive definite imaginary part can
be written asC = PQ−1 with matricesQ andP satisfying (1.1).
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Proof. Multiplying the second equation of (1.1) from the left and the right with a vector
v ∈ Cd yields

(Qv)∗(Pv) − (Pv)∗(Qv) = 2i ‖v‖2 ,

which shows thatv = 0 is the only vector in the null-space ofQ or P . Hence, these
matrices are invertible. Multiplying the first equation of (1.1) from the left with(Q−1)T

and from the right withQ−1 gives

PQ−1 − (Q−1)TPT = 0

and thus shows thatC = PQ−1 is complex symmetric. Further, we have

(ImC)(QQ∗) =
1

2i
(PQ−1 − (Q−1)∗P ∗)QQ∗ =

1

2i
(PQ∗ − (Q∗)−1(P ∗Q)Q∗) ,

which simplifies to the identity on using the second equationof (1.1) for substituting
P ∗Q = Q∗P − 2iI.

Conversely, for a complex symmetric matrixC with positive definite imaginary part
we setQ = (ImC)−1/2 andP = CQ. It is readily verified that these matrices satisfy the
relations (1.1). ⊓⊔

The factorization is not unique, since multiplyingQ andP from the right with a
unitary matrix preserves the relations (1.1).

Relationship with Symplectic Matrices.A real matrixY ∈ R
2d×2d is symplecticif it

satisfies the quadratic relation

Y TJY = J with J =

(
0 −I
I 0

)
. (1.3) V:symp

If we set, for complex matricesQ,P ∈ Cd×d,

Y =

(
ReQ ImQ
ReP ImP

)
,

then the relations (1.1) are equivalent to the symplecticity condition (1.3). We shall there-
fore refer to (1.1) as thesymplecticity relationsforQ andP .

Complex Gaussians in Hagedorn’s Parametrization.Consider a normalizedd-dimen-
sional Gaussian

ϕε0[q, p,Q, P ](x) = (πε)−d/4(detQ)−1/2 exp
( i

2ε
(x−q)TPQ−1(x−q)+ i

ε
pT (x−q)

)

(1.4) V:phi-0

with q, p ∈ Rd and matricesQ,P ∈ Cd×d satisfying (1.1). This function is of unit
L2 norm since a diagonalization of ImPQ−1 shows that it should have the factor
| det(ImPQ−1)−1|−1/4, and by (1.2),| det(ImPQ−1)−1|−1/4 = | det(QQ∗)|−1/4 =
| detQ|−1/2. It turns out favourable to take(detQ)−1/2 without the absolute value, where
the branch of the square root is chosen suitably, in particular such that(detQ(t))−1/2 is
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a continuous function oft for a continuous family of invertible matricesQ(t). We write
ϕ0 instead ofϕε0[q, p,Q, P ] when the parameters are clear from the context.

Gaussian Wave Packets and Quadratic Hamiltonians.We know from Sect. II.4 that
Gaussian wave packets with appropriately evolving parameters are exact solutions to
time-dependent Schrödinger equations

iε
∂ψ

∂t
= − ε2

2m
∆ψ + V ψ (1.5) V:tdse

in the case of aquadraticpotentialV . This fact underlies the approximation result for
more general smooth potentialsV , see Theorem II.4.4. It turns out that the equations of
motion assume a particularly appealing form with Hagedorn’s parametrization.

We consider the classical equations of motion associated with (1.5),

q̇ =
p

m

ṗ = −∇V (q)
(1.6) V:eom-qp

and their linearization along(q(t), p(t)),

Q̇ =
P

m

Ṗ = −∇2V (q)Q

(1.7) V:eom-QP

with the Hessian∇2V (q). Further, we consider the classical action integral

S(t) =

∫ t

0

( |p(s)|2
2m

− V (q(s))
)
ds. (1.8) V:action

Then, there is the following basic result from Hagedorn (1980, 1998).

Theorem 1.2 (Gaussian Wave Packets in a Quadratic Potential). LetV be a quadraticV:thm:gwp-quad
potential, and let(q(t), p(t), Q(t), P (t)) for 0 ≤ t ≤ t be a solution of the classical
equations (1.6)–(1.7) andS(t) the corresponding action (1.8). Assume thatQ(0) and
P (0) satisfy the relations (1.1). Then,Q(t) andP (t) satisfy (1.1) for all timest, and

ψ(x, t) = eiS(t)/ε ϕε0[q(t), p(t), Q(t), P (t)](x) (1.9) V:psi-gwp

is a solution of the time-dependent Schrödinger equation (1.5).

Proof. The fact that relation (1.1) is preserved under (1.7), is a consequence of the lemma
below (or of the symplecticity of the flow of the Hamiltonian system (1.6)). A direct,
lengthy calculation shows that (1.9) is a solution of the Schrödinger equation (1.5). Here
it is useful to note thatddt (detQ) = tr(Q̇Q−1) = 1

m tr(PQ−1). ⊓⊔
Remark 1.3. The theorem remains valid also in the case of a time-dependent quadratic
potentialV (x, t), in particular, for the local quadratic approximation to a smooth potential
along a classical trajectory.
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Lemma 1.4. Suppose thatQ(t), P (t) ∈ Cd×d satisfy the differential equations

Q̇(t) = F (t)P (t)

Ṗ (t) = G(t)Q(t)

with real symmetric matricesF (t), G(t). If the relations (1.1) hold att = 0, then they
hold for all t.

Proof. We have

d

dt
(Q∗P−P ∗Q) = Q̇∗P+Q∗Ṗ−Ṗ ∗Q−P ∗Q̇ = P ∗FP+Q∗GQ−Q∗GQ−P ∗FP = 0

and in the same wayddt (Q
TP − PTQ) = 0. ⊓⊔

Fourier Transform. Hagedorn’s parametrization of Gaussians has further beautiful prop-
erties. We mention that the scaled Fourier transform

Fεϕ(ξ) = (2πε)−d/2
∫

Rd

ϕ(ξ) e−iξ·x/ε dξ

of the Gaussianϕε0 is given by the formula

Fεϕε0[q, p,Q, P ](ξ) = e−ip·q/εϕε0[p,−q, P,−Q](ξ) ; (1.10) V:fourier-0

see Hagedorn (1998), formula (3.19).

V.2 Hagedorn’s Semi-Classical Wave Packets

Following Hagedorn (1998), we construct parameter-dependent orthonormalL2(Rd)
bases of multi-variate polynomials times Gaussians, whichhave very favourable propaga-
tion properties in the time-dependent Schrödinger equation (1.5). The Hagedorn functions
reduce to shifted and scaled Hermite functions in the one-dimensional case, but cannot in
general be reduced to tensor products of Hermite functions in higher dimensions.

Ladder Operators. In Sect. III.1 we constructed the Hermite functions via the ladder op-
erators for the harmonic oscillator. An analogous construction via appropriate parameter-
dependent ladder operators yields the Hagedorn functions.

As in the previous section, we letε > 0 be the small semi-classical parameter in
(1.5). We letq, p ∈ Rd position and momentum parameters, andQ,P ∈ Cd×d complex
matrices satisfying the symplecticity relations (1.1). Inthis section, we denote the position
and momentumoperatorsby q̂ = (q̂j)

d
j=1 andp̂ = (p̂j)

d
j=1, respectively: forψ ∈ S(Rd),

(q̂ψ)(x) = xψ(x), (p̂ψ)(x) = −iε∇ψ(x) (x ∈ R
d).
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Compared with our previous notation, the hats are added to avoid confusion with the
Gaussian parametersq andp. We recall the commutator relation (I.4.8), viz.,

1

iε
[q̂j , p̂k] = δjk . (2.1) V:qp-comm

Hagedorn (1998) introduces the parameter-dependentladder operatorsA = (Aj)
d
j=1

andA† = (A†
j)
d
j=1 as

A = A[q, p,Q, P ] = − i√
2ε

(
PT (q̂ − q) −QT (p̂− p)

)

A† = A†[q, p,Q, P ] =
i√
2ε

(
P ∗(q̂ − q) −Q∗(p̂− p)

)
.

(2.2) V:ladder

We note that ford = 1, ε = 1, q = 0, p = 0, Q = 1, P = i we have again the ladder
operators (III.1.6) of the standard harmonic oscillator. The key properties (III.1.8) and
(III.1.9) extend as follows.

V:lem:ladder Lemma 2.1. If Q andP satisfy (1.1), then we have the commutator relations

[Aj , A
†
k] = δjk . (2.3) V:ladder-comm

Moreover,A†
j is adjoint toAj on the Schwartz spaceS:

〈A†
jϕ |ψ〉 = 〈ϕ |Ajψ〉 ∀ϕ, ψ ∈ S . (2.4) V:ladder-adj

Proof. (a) WithQ = (Qjk) andP = (Pjk), we have (we letq = p = 0 for simplicity)

[Aj , A
†
k] =

1

2ε

[ d∑

ℓ=1

(
Pℓj q̂ℓ −Qℓj p̂ℓ

)
,

d∑

m=1

(
Pmj q̂m −Qmj p̂m

)]
.

By the canonical commutator relations (2.1), this simplifies to

[Aj , A
†
k] =

i

2

d∑

ℓ=1

(
−PℓjQℓk +QℓjPmk

)
=

i

2

(
−Q∗P + P ∗Q

)
k,j
.

By (1.1), this equalsδjk.
(b) To verify (2.4), we write out

〈A†
jϕ |ψ〉 =

〈
i√
2ε

d∑

ℓ=1

(
P ℓj q̂ℓ −Qℓj p̂ℓ

)
ϕ
∣∣∣ψ
〉

=
〈
ϕ
∣∣∣ − i√

2ε

d∑

ℓ=1

(
Pℓj q̂ℓ −Qℓj p̂ℓ

)
ψ
〉

= 〈ϕ |Ajψ〉 ,

where we just use that̂qℓ andp̂ℓ are self-adjoint operators. ⊓⊔
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lem:ladder-null Lemma 2.2. If Q andP satisfy (1.1), then the complex Gaussianϕ0 of (1.4) spans the
null-space ofA.

Proof. If ϕ ∈ S is in the null-space ofA, then it must satisfy the linear system of partial
differential equations

−iε∇ϕ(x) − pϕ(x) = C(x− q)ϕ(x)

with the complex symmetric matrixC = PQ−1. Multiples ofϕ0 are the only non-trivial
solutions of this equation. ⊓⊔

Hagedorn Functions.In the same way as for the harmonic oscillator eigenfunctions in
Sect. III.1, we can now construct eigenfunctions of the operatorsAjA

†
j to eigenvalues

1, 2, 3, . . . . Let k = (k1, . . . , kd) be a multi-index with non-negative integerskj , and
denote by〈j〉 = (0 . . . 1 . . . 0) thejth d-dimensional unit vector. By the same reasoning
as for (III.1.11) we define recursively functionsϕk = ϕεk[q, p,Q, P ] by

ϕk+〈j〉 =
1√
kj + 1

A†
jϕk (2.5) V:raising

and find that theϕk are normalized eigenfunctions of the symmetric operatorsAjA
†
j :

AjA
†
jϕk = (kj + 1)ϕk, ‖ϕk‖ = 1 .

From this relation we obtain, in the same way as in (III.1.12),

ϕk−〈j〉 =
1√
kj
Ajϕk , (2.6) V:lowering

so thatA†
j andAj can be viewed as raising and lowering operators, respectively, in the

jth component of the multi-index. From (2.5) and (2.6), usingthe definitions (2.2) and
the fact thatQQ∗ is a real matrix by (1.2), we obtain the recurrence relation

Q
(√

kj + 1ϕk+〈j〉(x)
)d
j=1

=

√
2

ε
(x− q)ϕk(x) −Q

(√
kj ϕk−〈j〉(x)

)d
j=1

. (2.7) V:rec

This permits us to evaluateϕk(x) at a given pointx. It also shows thatϕk is the product
of a polynomial of degreek1 + . . .+ kd with the Gaussianϕ0.

Theorem 2.3 (Hagedorn Functions).The functionsϕk = ϕεk[q, p,Q, P ] defined byV:thm:hag-fun
(1.4) and (2.5) form a completeL2-orthonormal set of functions.

The orthonormality of the functionsϕk follows from their property as eigenfunctions
of the symmetric operatorAA†. The completeness is obtained by an extension of the
arguments in the proof of completeness of the Hermite functions and is not proved here.

We mention that formula (1.10) for the Fourier transform extends to all the functionsϕk:
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Fεϕεk[q, p,Q, P ](ξ) = (−i)|k| e−ip·q/ε ϕεk[p,−q, P,−Q](ξ) (2.8) V:fourier-k

with |k| = k1 + . . .+ kd; see Hagedorn (1998).

Evolution of Ladder Operators Under Quadratic Hamiltonian s. Along a solution
(q(t), p(t), Q(t), P (t)) of the classical equations (1.6)–(1.7) we consider the time-depen-
dent operators

Aj(t) = Aj(q(t), p(t), Q(t), P (t)), A†
j(t) = A†

j(q(t), p(t), Q(t), P (t)) .

LetH = − ε2

2m∆+ V denote the Hamiltonian of (1.5).

V:lem:A-evol Lemma 2.4. In the case of a quadratic potentialV we have

Ȧj =
1

iε
[Aj , H ] , Ȧ†

j = − 1

iε
[A†
j , H ] .

Proof. With (1.6)–(1.7) we obtain forA(t) = (Aj(t))

Ȧ =
i√
2ε

(
QT∇V (q̂) +

1

m
PT p̂

)
.

The same expression is obtained for1
iε [A,H ] on using the commutator relations (2.1) and

the ensuing1
iε [q̂j , p̂

2
k] = δjk · 2p̂k and 1

iε [q̂
2
j , p̂k] = δjk · 2q̂j . The result forA† is obtained

by taking complex conjugates. ⊓⊔

Hagedorn Wave Packets and Quadratic Hamiltonians.We now have all ingredients
for the following remarkable result by Hagedorn (1998).

V:thm:hagwp-quad Theorem 2.5. Let V be a quadratic potential, and let(q(t), p(t), Q(t), P (t)) be a solu-
tion of the classical equations (1.6)–(1.7) andS(t) the corresponding action (1.8). As-
sume thatQ(0) andP (0) satisfy the symplecticity relations (1.1). Then, for everymulti-
indexk,

eiS(t)/ε ϕεk[q(t), p(t), Q(t), P (t)](x)

is a solution of the time-dependent Schrödinger equation (1.5).

Proof. We know from Theorem 1.2 that the statement is correct fork = 0. In view of the
construction of the functionsϕk by (2.5), the result follows by induction if we can show
that with a solutionψ(·, t), alsoA†

j(t)ψ(·, t) is a solution of (1.5). This holds indeed true,
because

iε
∂

∂t
(A†

jψ) = iεȦ†
jψ +A†

jHψ =
(
iεȦ†

jψ + [A†
j , H ]ψ

)
+HA†

jψ

and the expression in big brackets vanishes by Lemma 2.4. ⊓⊔
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As with Theorem 1.2, the above theorem remains valid, with the same proof, for a
time-dependent quadratic potentialV (x, t).

Approximation Schemes in the Case of Non-Quadratic Potentials.For a time-dependent
Schrödinger equation (1.5) with a non-quadratic potential V , the wave function can be
represented in the basis of Hagedorn functions as a series

ψ(x, t) = eiS(t)/ε
∑

k∈Nd

ak(t)ϕk(x, t) (2.9) V:hag-series

(with N denoting the set of natural numbers including0), where we have abbreviated
ϕk(x, t) = ϕεk[q(t), p(t), Q(t), P (t)](x) with (q(t), p(t), Q(t), P (t)) a solution to the
classical equations (1.6)–(1.7) and whereS(t) is the classical action (1.8). We search for
an approximation

ψ(x, t) ≈ ψK(x, t) = eiS(t)/ε
∑

k∈K
ck(t)ϕk(x, t) (2.10) V:hagwp

with a finite multi-index setK, which may be a cube{|kj | ≤ K} or a hyperbolically
reduced set (III.1.18).

Hagedorn (1998) determines the coefficientsck from differential equations that con-
tain higher derivatives (from the third derivative onwards) of the potentialV at the clas-
sical positionq(t). He obtains approximations to the wave function of asymptotic order
O(εN/2) for arbitraryN .

Alternatively, as in Sect. II.5.2, the coefficients can be determined from the time-
dependent variational principle on the time-varying approximation space spanned by the
functionsϕk(t) = ϕk(·, t) for k ∈ K, by the Galerkin condition

〈
ϕk(t)

∣∣∣ iε∂ψK
∂t

(t) −HψK(t)
〉

= 0 ∀ k ∈ K, ∀ t .

If we write the potential as
V = Uq(t) +Wq(t)

with the quadratic Taylor polynomialUq of V at the positionq and with the non-quadratic
remainderWq, then we have

iε
∂

∂t
(cke

iS/εϕk) −H(cke
iS/εϕk) = iεċke

iS/εϕk

+ck

(
iε
∂

∂t
(eiS/εϕk) +

ε2

2m
∆(eiS/εϕk) − Uq(e

iS/εϕk)
)
− cke

iS/εWqϕk

where the term in big brackets vanishes by the version of Theorem 2.5 for time-dependent
quadratic potentials. (Note that only the quadratic partUq enters into the equations de-
terminingq(t), p(t), Q(t), P (t), S(t)). We then obtain the differential equations for the
coefficientsc = (ck)k∈K as

iεċ(t) = F (t)c(t) with F (t) =
(
〈ϕk |Wq(t) |ϕℓ〉

)
k,ℓ∈K .
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In the following section we give a fully discrete, explicit,and time-reversible time-
stepping algorithm to propagate the Gaussian parametersq(t), p(t), Q(t), P (t), the phase
S(t), and the coefficientsck(t) of a Hagedorn wave packet (2.10).

V.3 A Numerical Integrator for Hagedorn Wave Packets

In this section we describe an algorithm by Faou, Gradinaru &Lubich (2008) for the
approximate solution of time-dependent Schrödinger equations (1.5) in a semi-classical
setting using Hagedorn wave packets. The method is based on the splitting between the ki-
netic and potential operatorsT = − ε2

2m∆ andV . We consider the free linear Schrödinger
equation

iε
∂ψ

∂t
= − ε2

2m
∆ψ (3.1) EFLS

and the equation with only a potential

iε
∂ψ

∂t
= V (x)ψ. (3.2) ELSV

The potential will be further decomposed into its quadraticpart at the current positionq
and the non-quadratic remainder.

Starting with a Hagedorn wavepacket (2.10) as initial data for the Schrödinger equa-
tion, we will make use of the following:

• We can solve exactly the free Schrödinger equation (3.1). The wave function remains a
Hagedorn wave packet (2.10) with unaltered coefficientsck.

• For a quadratic potential, we can solve exactly equation (3.2). The wave function again
remains a Hagedorn wave packet (2.10) with unaltered coefficientsck.

• For the non-quadratic remainder at the current position, wecompute the Galerkin ap-
proximation to equation (3.2) on the space spanned by the functionsϕk with fixed
parametersq, p,Q, P , letting the coefficientsck in the formulation (2.10) vary.

Kinetic Part and Quadratic Potential. We will use the following properties, which
are direct consequences of Theorem 2.5. A time-dependent Hagedorn wavepacket (2.10)
solves the free Schrödinger equation (3.1) if

q(t) = q(0) +
t

m
p(0)

Q(t) = Q(0) +
t

m
P (0) (3.3) free-sol

S(t) = S(0) +
t

2m
|p(0)|2

andp(t) = p(0), P (t) = P (0), ck(t) = ck(0).
For a quadratic potentialU(x), a time-dependent Hagedorn wavepacket (2.10) solves

equation (3.2) withV = U if
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p(t) = p(0) − t∇U(q(0))

P (t) = P (0) − t∇2U(q(0))Q(0) (3.4) quad-sol

S(t) = S(0) − t U(q(0))

andq(t) = q(0),Q(t) = Q(0), ck(t) = ck(0).

Galerkin Approximation for Non-Quadratic Potentials. Let W (x) be a given (non-
quadratic) potential and consider equation (3.2) withW in place ofV . We fix the Gaussian
parametersq, p,Q, P and take the Galerkin approximation on the linear space spanned by
the Hagedorn functionsϕk = ϕεk[q, p,Q, P ] for multi-indicesk ∈ K. As we know from
the beginning of Sect. III.1.1, this is equivalent to the linear system of ordinary differential
equations for the coefficientsc(t) = (ck(t))k∈K of (2.10):

iεċ = Fc ,

where the Hermitian matrixF has the elements

fkℓ = 〈ϕk|W |ϕℓ〉 (k, ℓ ∈ K). (3.5) Fint

The solution to this problem is thus given by the action of theexponential ofF :

c(t) = exp
(
− it
ε
F
)
c(0). (3.6) PW

We note thatfkℓ = O(ε3/2) if the quadratic Taylor polynomial ofW at q vanishes.
The computation of the matrix exponential times a vector canthen be done efficiently
using just a few Lanczos iterations withF , see Sect. III.2.2. The efficient computation of
the multi–dimensional integrals in (3.5) is the major computational cost. Sparse Gauss–
Hermite quadrature as discussed in Sect. III.1.1 along the eigendirections of the width
matrix ImPQ−1 = (QQ∗)−1 is a possible computational approach. We refer to Faou,
Gradinaru & Lubich (2008) for a discussion of various ways tocompute these integrals.

Abstract Formulation of the Time-Stepping Algorithm. For given Gaussian parame-
tersΓ 0 = (q0, p0, Q0, P 0, S0) and coefficientsc0 = (c0k)k∈K as initial data, we denote

• by Tt(Γ 0, c0) the solution to the free Schrödinger equation given by (3.3),
• by Ut(Γ 0, c0) the solution of the quadratic-potential equation given by (3.4),
• and byWt(Γ

0, c0) the propagator given by (3.6).

With both propagatorsUt andWt, the parametersq andQ remain constant. Moreover,
the propagatorsUt andWt commute. This is seen from the expressions in (3.4) and (3.6),
noting that onlyq andQ, but notp andP , enter into the definition of the matrixF .

For a given step size∆t, the time-stepping algorithm is described briefly as follows:

1. Half-step of the kinetic part. We define the parameters(Γ 1/2,−, c0) by applying the
propagatorT∆t/2 starting from(Γ 0, c0). This yields updatesq1/2,Q1/2 andS1/2,−.
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2. Full step of the potential part. We split the potentialV into its quadratic Taylor poly-
nomialU1/2 at q1/2 and the remainder termW 1/2:

V (x) = U1/2(x) +W 1/2(x) .

• We determine the parameters(Γ 1/2,+, c0) by applying the propagatorU∆t asso-
ciated with the quadratic potentialU1/2 starting from(Γ 1/2,−, c0). This yields
updatesp1, P 1 andS1/2,+.

• We determine the coefficientsc1 using the propagatorW∆t associated with the
non-quadratic remainderW 1/2 starting fromc0.

3. Half-step of the kinetic part. We define the parameters(Γ 1, c1) by applying the prop-
agatorT∆t/2 starting from(Γ 1/2,+, c1). This yields updatesq1,Q1 andS1.

The Practical Time-Stepping Algorithm. We now give a full algorithmic description.
Assume that the stepsize∆t is given, and let the reald-vectorsqn, pn, the complexd× d
matricesQn, Pn, the real scalarSn, and the complex coefficient vectorcn =

(
cnk
)
k∈K

be such that
ψn = eiS

n/ε
∑

k∈K
cnk ϕ

ε
k[q

n, pn, Qn, Pn]

is an approximation to the solution of the Schrödinger equation (1.5) at timetn. To com-
pute the approximationψn+1 at timetn+1 = tn +∆t we proceed as follows:

1. Computeqn+1/2,Qn+1/2, andSn+1/2,− via

qn+1/2 = qn +
∆t

2m
pn

Qn+1/2 = Qn +
∆t

2m
Pn (3.7)

Sn+1/2,− = Sn +
∆t

4m
|pn|2 .

2. Computepn+1, Pn+1, andSn+1/2,+ via

pn+1 = pn −∆t∇V (qn+1/2)

Pn+1 = Pn −∆t∇2V (qn+1/2)Qn+1/2 (3.8)

Sn+1/2,+ = Sn+1/2,− −∆tV (qn+1/2) .

3. Update the coefficient vectorcn+1 = (cn+1
k )k∈K as

cn+1 = exp
(
− i∆t

ε
Fn+1/2

)
cn. (3.9) EXPM

Here,Fn+1/2 = (fkℓ)k,ℓ∈K is the Hermitian matrix with entries

fkℓ =
〈
ϕ
n+1/2
k |Wn+1/2 |ϕn+1/2

ℓ

〉
, (3.10) MAT
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whereϕn+1/2
k = ϕεk[q

n+1/2, pn+1, Qn+1/2, Pn+1] are the Hagedorn basis functions
and

Wn+1/2(x) = V (x) − Un+1/2(x)

is the remainder in the local quadratic approximation toV , given atq = qn+1/2 by
Un+1/2(x) = V (q) + ∇V (q) (x− q) + 1

2 (x− q)T∇2V (q) (x − q).
4. Computeqn+1,Qn+1, andSn+1 via

qn+1 = qn+1/2 +
∆t

2m
pn+1

Qn+1 = Qn+1/2 +
∆t

2m
Pn+1 (3.11)

Sn+1 = Sn+1/2,+ +
∆t

4m
|pn+1|2 .

Clearly, Step 3. treating the non-quadratic part of the potential is the computationally most
expensive part of the algorithm, since it requires the computation of the multi-dimensional
integrals (3.10) and the evaluation of (3.9). The latter canbe done efficiently by a few
Lanczos iterations as studied in Sect. III.2.2. For the computation of the matrix elements
of Fn+1/2 we refer to the discussion in Faou, Gradinaru & Lubich (2008).

The matrixFn+1/2 depends only onqn+1/2 andQn+1/2, but not onpn+1 andPn+1,
since the imaginary parts in the arguments of the Gaussian cancel out in (3.10), and
Im (Pn+1Qn+1)−1 = (Qn+1Qn+1∗

)−1 is independent ofPn+1 by (1.2).

Properties of the Algorithm. The algorithm is of second order accuracy in the parameters
q, p,Q, P, S andck and enjoys a number of attractive conservation and limit properties:

1. By construction, the algorithm is time-reversible. Thisholds true because the propa-
gatorsUt andWt commute, and in the steps with the potential, the positionq and the
width matrix ImPQ−1 = (QQ∗)−1 remain unchanged.

2. The algorithm preserves the symplecticity relations (1.1) between the matricesQ and
P , since it is a composition of exact flows with no or a quadraticpotential, andQ and
P are not modified in the step with the non-quadratic remainder.

3. The algorithm preserves theL2 norm of the wave packet, since the Hagedorn func-
tionsϕk are orthonormal and the propagation of the coefficients(ck) is unitary.

4. For the position and momentum parametersq andp, the algorithm coincides with the
Störmer-Verlet algorithm (I.3.5) applied to the corresponding classical equations of
motion.

5. In the limit of taking the full basis setϕk with all k ∈ Nd, the Galerkin approx-
imation used in the remainder propagatorWt becomes exact. SinceUt and Wt

commute, the second step in the above algorithm becomes the solution of equa-
tion (3.2) in this limit. Hence, the algorithm then becomes the Strang splitting
exp(− i

ε∆tH) ≈ exp(− i
ε
∆t
2 T ) exp(− i

ε∆tV ) exp(− i
ε
∆t
2 T ) of the time-dependent

Schrödinger equation.
6. The algorithm is robust in the classical limitε → 0 : the propagatorW∆t of the

remainder isO(ε1/2∆t) close to the identity operator, sinceW 1/2(x) is at least cubic
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in (x − q1/2), and hence the approximation in the potential part becomes exact for
ε→ 0. The kinetic part is solved exactly for allε.

With the exception of Property 5., the above properties are valid also with an approx-
imate computation of the integrals in (3.5). A detailed error analysis in dependence of the
time-step∆t, the multi-index setK, and the semi-classical parameterε is currently under
investigation.
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